
@Copyright Don O’Neill, 2002 1 Return on Investment

Return on Investment
Using Software Inspections

Don O’Neill
Independent Consultant

Outline
Return on Investment
Software Product Engineering Method
Additional Cost Multiplier
Defect Detection Rate
Cost to Repair
Defect Detection Cost
Reasoning About ROI
Reasoning About Net Savings
Reasoning About Detection Costs
A Worked Example
Selecting Parameter Values
Computing ROI
Transition from Cost to Quality
To Compute Your Return on Investment

Figures
1 Additional Cost Multiplier
2 Defect Leakage Model
3a Development Detection
3b Test Leakage
4 Defect Type Distribution
5 Defects Inserted Per Thousand Lines

@Copyright Don O’Neill, 2002 2 Return on Investment

6. Return on Investment

@Copyright Don O’Neill, 2002 3 Return on Investment

Return on Investment
Using Software Inspections

Keywords
Additional cost multiplier
Cost to repair
Defect detection cost
Defect detection rate
National Software Quality Experiment
Net savings
software inspections
software product engineering
Return on investment

Abstract
In order to deliver superior quality many organizations have made commitments to initiatives on
the Software Engineering Institute’s Capability Maturity Model, International Standards
Organization (ISO) 9001, or Six Sigma. Each of these initiatives has one thing in common: the
practice of Software Inspections.

Software Inspections are structured to serve the needs of quality management in verifying that a
software artifact complies with its standard of excellence for software engineering. The focus is
on verification, that is, on doing the job right. The Software Inspection is a formal review held at
the conclusion of a life cycle activity and serves as a quality gate with an exit criteria for moving
to subsequent activities. The National Software Quality Experiment (NSQE) is providing
valuable insights on the practice of Software Inspections through its database of thousands of
Software Inspection sessions from dozens of organizations containing tens of thousands of
defects along with the pertinent information needed to pinpoint their root causes.

This model for Return on Investment bases the savings on the cost avoidance associated with
detecting and correcting defects earlier rather than later in the product evolution cycle. It is
defined as Net Savings divided by Detection Cost, where Net Savings is Cost Avoidance less
Cost to Repair Now and Detection Cost is the cost of preparation effort and the cost of conduct
effort. Savings result from early detection and correction avoiding the increased cost multiplier
associated with detection and correction of defects later in the life cycle. A Major Defect that
leaks from Development to Test may cost two to ten times to detect and correct. Some of these
defects leak further from Test to Customer Use and may cost an additional two to ten times to
detect and correct. A Minor Defect may cost an additional two to four times to correct later.
The defined measurements collected in the Software Inspections Lab may be combined in
complex ways to form the derived metric for return on investment. These involve additional cost
multiplier, defect detection rate, cost to repair, and detection cost.

@Copyright Don O’Neill, 2002 4 Return on Investment

Return on Investment
Managers are interested in knowing the return on investment to be derived from software process
improvement actions. The Software Inspections Process gathers some of the data needed to
determine this [McGibbon 96]. Software Inspections are structured to serve the needs of quality
management in verifying that a software artifact complies with its standard of excellence for
software engineering. The focus is one of verification, on doing the job right. The software
inspection is a formal review held at the conclusion of a life cycle activity and serves as a quality
gate with an exit criteria for moving on to subsequent activities [O’Neill 01].

This model for Return on Investment bases the savings on the cost avoidance associated with
detecting and correcting defects earlier rather than later in the product evolution cycle. A Major
Defect that leaks from Development to Test may cost two to ten times to detect and correct.
Some of these defects leak further from Test to Customer Use and may cost an additional two to
ten times to detect and correct. A Minor Defect may cost an additional two to four times to
correct later [O’Neill 01].

The Return on Investment for Software Inspections is defined as Net Savings divided by
Detection Cost, where Net Savings is Cost Avoidance less Cost to Repair Now and Detection
Cost is the cost of preparation effort and the cost of conduct effort. Savings result from early
detection and correction avoiding the increased cost multiplier associated with detection and
correction of defects later in the life cycle.

The defined measurements collected in the Software Inspections Lab may be combined in
complex ways to form the derived metric for return on investment. These involve additional cost
multiplier, defect detection rate, cost to repair, and detection cost.

Software Product Engineering Method
The values for these complex parameters revolve around the software product engineering
method being practiced. Three levels of achievement of software product engineering are
identified:
1. Ad hoc programming is characterized by a code and upload life cycle and a hacker coding
style. This is common in low software process maturity organizations especially those facing
time to market demands.
2. Structured software engineering employs structured programming, modular design, and
defined programming style and pays close attention to establishing and maintaining traceability
among requirements, specification, architecture, design, code, and test artifacts. This is the
minimum expectation for an SEI CMM level 3 [Paulk 95].
3. Disciplined software engineering is more formal and might be patterned after Clean Room
software engineering, Personal and Team Software Process, and Extreme Programming
techniques [Prowell 99], [Humphrey 97], [Wells 01]. This is the expectation for an SEI CMM
level 4 and 5 organization [Paulk 95].

Additional Cost Multiplier
Since savings result from early defect detection and correction avoiding the increased cost
multiplier associated with detection and correction of defects later in the life cycle, the question
of the cost multiplier must be answered in order to determine the return on investment. Some set

@Copyright Don O’Neill, 2002 5 Return on Investment

the additional cost multiplier for finding and fixing a defect detected after delivery at 100 times
[Basili/Boehm 01]. Others have measured it more precisely and found it to be 10 times for each
life cycle activity. IBM Rochester, winner of the Malcolm Baldrige Award, reported that defects
leaking from code to test cost nine times more to detect and correct, and defects leaking from test
to the field cost thirteen times more [Lindner 94].

Why is There a Multiplier?
An example may help illustrate why a leaked defect costs more. A code defect that leaks into
testing may require multiple test executions to confirm the error and additional executions to
obtain debug information. Once a leaked defect has been detected, the producing programmer
must put aside the task at hand, refocus attention on correcting the defect and confirming the
correction, and then return to the task at hand. The corrected artifact must then be reinserted into
the software product engineering or product release pipeline.

What is The Multiplier?
It is reasonable to expect the additional cost multiplier to be linked to the software product
engineering method practiced. Figure 1 portrays the Additional Cost Multiplier by Software
Product Engineering method.
1. Ad hoc programming (AHP) is likely to experience a multiplier of 8-10 times in detecting and
correcting major defects in spaghetti bowl coding lacking in order and consistency. The
multiplier for minor defects is likely to be 4 times.
2. Structured software engineering (SSE) is likely to experience a multiplier of 5-7 times in
detecting and correcting major defects in the production of well structured, consistently recorded
components with organized relationships among modules and traceability among life cycle
artifacts. The multiplier for minor defects is likely to be 3 times.
3. Disciplined software engineering (DSE) with its formal focus on quality may experience a
multiplier of 2-4 times in detecting and correcting major defects. The multiplier for minor
defects is likely to be 2 times.

What Effect Does the Multiplier Have?
In summary, an undetected major defect that escapes detection and leaks to the next phase of the
life cycle may cost two to ten times to detect and correct. A minor defect may cost two to four
times to detect and correct. The resulting Net Savings then may be up to nine times for major
defects and up to three times for minor defects.

@Copyright Don O’Neill, 2002 6 Return on Investment

10

8

6

4

2

0

M
u

l

t
i

p

l
i

e

r

Software Product Engineering Method

DSE SSE AHP

Additional Cost Multiplier

Major Defects

Minor Defects

Figure 1 Additional Cost Multiplier

Defect Detection Rate
The model shown in figure 2 illustrates that defects are detected in Development (DD) and Test
(TD), and defects leak from Development (DL) and Test (TL). Defect detection rate is the
number of defects detected divided by the number of defects present.

DD- Development Detection
DL- Development Leakage

TD- Test Detection
TL- Test Leakage

Defect Leakage Model

Development

DD

DL
Test

TD

Customer UseTL

Figure 2 Defect Leakage Model

It is reasonable to expect the defect detection rate to be linked to the software product
engineering method practiced including the software inspection process followed. Figures 3a-b
illustrate Development Detection and Test Leakage using empirically derived values for the
defect leakage model factors of each Software Product Engineering method.While the
development defect detection rates are based on the results of the National Software Quality
Experiment (NSQE), the expected test detection uses a notional value in order to complete the
analysis.
1. Ad hoc programming is likely to experience a development defect detection rate in the range
of .50 to .65. While the test leakage depends on the adequacy of the test process, ad hoc

@Copyright Don O’Neill, 2002 7 Return on Investment

programming is likely to experience test leakage in the range of .175 to .25 based on an expected
test detection of .50.
2. Structured software engineering is likely to experience a development defect detection rate in
the range of of .70 to .80 and a test leakage in the range of .1 to .15 based on an expected test
detection of .50.
3. Disciplined software engineering may experience a development defect detection rate in the
range of .85 to .95 and a test leakage in the range of .025 to .075 based on an expected test
detection of .50.

1

0.8

0.6

0.4

R

a

t

e

Software Product Engineering Method

DSE SSE AHP

Development Detection (DD)

Figure 3a Development Detection

0.25

0.2

0.15

0.1

0.05

0

R

a
t

e

Software Product Engineering Method

DSE SSE AHP

Test Leakage (TL)

Figure 3b Test Leakage

Cost to Repair
The cost to repair a defect detected in the life cycle activity in which it was inserted depends on
the software product engineering method practiced and the business environment in which it is
operating. This must be supplied by the organization based on its actual cost history and the
superior knowledge of its personnel.

In determining the cost to repair, the organization needs to obtain this cost by defect type. During
the Software Inspection Lab session, each defect detected is assigned a defect type including
interface, data, logic, I/O, performance, functionality, human factors, standards, documentation,
syntax, maintainability, and other. The defect type distribution revealed by the National Software
Quality Experiment is shown in figure 4 [O’Neill 95,96,98,99,00].

@Copyright Don O’Neill, 2002 8 Return on Investment

50.00

40.00

30.00

20.00

10.00

0.00

P

e

r

c

e

n

t

Percent of Defect Types

National Software Quality Experiment: 1992-2001

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

Figure 4 Defect Type Distribution

For purposes of the Software Inspections Return on Investment analysis, the cost to repair factor
is included in the expression for Net Savings discussed later. For analysis here, the cost to
repair is set at one hour for a major defect and one hour for a minor defect.

Defect Detection Cost
The cost of defect detection includes the preparation effort and conduct effort of the Software
Inspection participants. Conduct time is the wall clock time consumed by the Software
Inspection meeting. Conduct effort is conduct time times the number of participants. Factors
involved in determining detection cost include the size of the artifact being inspected, the
number of defects inserted, and the relationship between preparation effort and conduct effort.

It is reasonable to expect the defect detection cost to be linked to the software product
engineering method practiced including the software inspection process followed. Figure 5
illustrates the defect insertion rates by Software Product Engineering method.
1. Ad hoc programming may experience a preparation effort divided by conduct effort ratio of
approximately .60 in inspecting artifacts of 400-600 lines of code, as experienced by level 1
organizations in the National Software Quality Experiment [O’Neill 95,96,98,99,00]. These
organizations may experience a defect insertion rate of 40-60 defects per thousand lines of code.
2. Structured software engineering may experience a preparation effort divided by conduct effort
ratio of approximately .80 in inspecting artifacts of 200-400 lines of code, as experienced by
level 3 organizations in the National Software Quality Experiment [O’Neill 95,96,98,99,00].
These organizations may experience a defect insertion rate of 20-30 defects per thousand lines of
code.
3. Disciplined software engineering may experience a preparation effort divided by conduct
effort ratio of approximately 1.0 in inspecting artifacts less than 200 lines of code. These
organizations may experience a defect insertion rate of 10-15 defects per thousand lines of code.

@Copyright Don O’Neill, 2002 9 Return on Investment

50

40

30

20

10

0

D

e

f

e

c

t

s

Software Product Engineering Method

DSE SSE AHP

Defects Inserted Per K

Major Defects

Minor Defects

Figure 5 Defects Inserted Per Thousand Lines

Reasoning About ROI
Software Inspections Return on Investment is Net Savings divided by Detection Cost. Reasoning
about Return on Investment then is assisted by evaluating the expression
[ROI:= Net Savings/Detection Cost].

Reasoning About Net Savings
Net Savings is Cost Avoidance minus Cost to Repair Now. Reasoning about Net Savings is
assisted by evaluating the expression [Net Savings:= Cost Avoidance-Cost to Repair Now].

Cost Avoidance results from the avoidance of the higher costs occurring from deferred detection
and corrections. The Additional Cost Multiplier comes into play. M1 is the Additional Cost to
Repair Multiplier for Development to Test Major Defect Leakage. M2 is the Additional Cost to
Repair for Test to Customer Use Major Defect Leakage. M3 is the Additional Cost to Repair for
Minor Defect Leakage.

Reasoning about Cost Avoidance is assisted by evaluating the expression
[Cost Avoidance:= Major Defects * {(M1 * DD)+(M1 * DD) * (M2 * TL)*C1}+Minor Defects
* M3].

The Cost to Repair Now, simply the cost of defect correction, is subtracted from Cost Avoidance
to yield Net Savings. Hence reasoning about Net Savings is assisted by evaluating the expression
 [Net Savings:= Major Defects * {(M1 * DD)+(M1 * DD) * (M2 * TL)*C1-C1}+Minor Defects
* (M3-C2)].
Where:
M1: (2-10) Additional Cost to Repair Multiplier for Development to Test Major Defect
Leakage
M2: (2-10) Additional Cost to Repair Multiplier for Test Customer Use Major Defect
Leakage
M3: (2-4) Additional Cost to Repair for Minor Defect Leakage
DD: (.5-.95) Defect Detection Rate for Development to Test
TL: (.05-.5) Test Leakage Rate for Test to Customer Use
C1: Average Cost to Repair Major Defect

@Copyright Don O’Neill, 2002 10 Return on Investment

C2: Average Cost to Repair Minor Defect

Reasoning About Detection Cost
Detection Cost is Preparation Effort plus Conduct Effort. Reasoning about Detection Cost is
assisted by evaluating the expression
[Detection Cost:= Preparation Effort + Conduct Effort].

Preparation Effort is the total Minutes of Preparation Effort. Conduct Effort is the Minutes of
Conduct Time multiplied by the number of participants. Substituting, the resulting expression is
[Detection Cost:= {Minutes of Preparation Effort + (Minutes of Conduct Time *
Participants)}/60].

Where:
Participants: (4-6) Number of participants
60 minutes per hour

A Worked Example
The Return on Investment is determined by using the expression for Net Savings specified above
and setting the parameters for Cost to Repair Multiplier, Defect Detection, and Defect Leakage.
For example, to determine the expression for ROI to be used in a project spreadsheet, the
following example is offered:

1. Setting the parameters:
M1: 5 M2: 10 M3: 2 DD: .6 TL: .25 C1: 1 C2: 1

2. Using the expression:
[Net Savings:= Major Defects * {(M1 * DD)+(M1 * DD) * (M2 * TL)*C1-C1}+ Minor Defects
* (M3-C2)]

3. Substituting for the values of the worked example:
[Net Savings:= Major Defects * {(5 * .6)+(5 * .6) * (10 * .25)*1 -1}+Minor Defects * (2-1)]

4. The following expression for Net Savings results:
[Net Savings:= 9.5 * Major Defects+Minor Defects]

The result of the worked example is a simplified expression for Net Savings of the type used to
derive the Return on Investment metric in the National Software Quality Experiment (NSQE).
Figure 6 illustrates the range of practice for Return on Investment.

@Copyright Don O’Neill, 2002 11 Return on Investment

10

8

6

4

2

0

S

a

v

i

n

g

s

/

C

o

s

t

National Software Quality Experiment

Return On Investment

Figure 6 Return on Investment

Selecting Parameter Values
Where an organization possesses superior knowledge of its software operation, it should utilize
the parameter values that best reflect this understanding. Candidate parameter values for each
software product engineering method are shown below for Disciplined Software Engineering
(DSE), Structured Software Engineering (SSE), and Ad Hoc Programming (AHP).

M 1 M 2 M 3 Major Minor DD T L Prep Conduct Partici

Per K Per K Min Min

DSE 2 - 4 2 - 4 2 2 . 5 1 0 .95-.85 .025-.075 5 0 0 1 2 0 4

S E E 5 - 7 5 - 7 3 5 2 0 .70-.80 .075-.150 4 0 0 1 2 0 4

AHP 8 - 1 0 8 - 1 0 4 1 0 4 0 .50-.65 .175-.250 3 0 0 1 2 0 4

Computing ROI
Software process improvement goals involve both cost and quality. The achievement of these
goals varies according to the software product engineering method practiced, and these
variations are illustrated in the application of the selected parameter values. Ad hoc
programming practitioners derive a substantial net savings and return on investment but a high
incidence of defect leakage into customer use. Structured software engineering practitioners
experience an attractive net savings and return on investment and a reduced defect leakage in to
customer use. Disciplined software engineering practitioners barely recoup the investment but
achieve a very low incidence of defect leakage into customer use.

@Copyright Don O’Neill, 2002 12 Return on Investment

DD M 1 TL M 2 M 3 Net Detection R O I Leaks

Savings Cost Per K

DSE

Disciplined . 9 5 2 . 0 2 5 2 2 1 2 . 4 9 1 6 . 3 3 0 . 7 6 . 3 1 2 5

Software . 9 0 3 . 0 5 0 3 2 1 5 . 2 6 1 6 . 3 3 0 . 9 3 . 6 2 5 0

Engineering . 8 5 4 . 0 7 5 4 2 1 8 . 5 5 1 6 . 3 3 1 . 1 4 . 9 3 7 5

S S E

Structured

Software . 8 0 5 . 1 0 0 5 3 6 5 . 0 0 1 4 . 6 7 4 . 4 3 2 . 5 0 0

Engineering . 7 5 6 . 1 2 5 6 3 7 4 . 3 8 1 4 . 6 7 5 . 0 7 3 . 1 2 5

. 7 0 7 . 1 5 0 7 3 8 5 . 2 3 1 4 . 6 7 5 . 8 1 3 . 7 5 0

AHP

Ad Hoc . 6 5 8 . 1 7 5 8 4 2 3 4 . 8 0 1 3 . 0 0 1 8 . 0 6 8 . 7 5 0

Programming . 6 0 9 . 2 0 0 9 4 2 6 1 . 2 0 1 3 . 0 0 2 0 . 0 9 1 0 . 0 0

. 5 5 1 0 . 2 2 5 1 0 4 2 8 8 . 7 5 1 3 . 0 0 2 2 . 2 1 1 1 . 2 5

. 5 0 1 0 . 2 5 0 1 0 4 2 8 5 . 0 0 1 3 . 0 0 2 1 . 9 2 1 2 . 5 0

Transition From Cost to Quality
In using Software Inspections, the goals vary with the software product engineering method
used, transitioning from cost to quality.

By necessity, the focus of ad hoc programming practitioners is on reducing cost by detecting as
many defects as possible. With 40-60 defects inserted, a defect detection rate of .50-.65, and an
additional cost multiplier of 8-10, the result is a Net Savings of 234.80 to 285 labor hours and a
defect leakage expectation of 8.75-12.50 per thousand lines of code, numbers that promote a
focus on cost. For this group, finding defects is like finding free money, and there are always
more defects to find; however, managers struggle to meet cost and schedule commitments.

Structured software engineering focus is split between reducing cost and improving quality. With
20-30 defects inserted, a defect detection rate of .70-.80, and an additional cost multiplier of 5-7,
the result is a a Net Savings of 65.00-85.23 labor hours and a defect leakage expectation of 2.5-
3.75 per thousand lines of code, numbers that promote an attraction to both goals. For this group,
there is constant dithering between between cost and schedule.

Without question, the focus of disciplined software engineering practitioners is on eliminating
every possible defect even if defect detection costs exceed net savings and the return on
investment falls below the break even point. With 10-15 defects inserted, a defect detection rate
of .85-.95, and an additional cost multiplier of 2-4, the result is a Net Savings of 12.49-18.55
labor hours and a defect leakage expectation of .3125-.9375 per thousand lines of code, numbers
that promote a focus on quality. For this group, every practitioner is riveted on achieving
perfection.

To Compute Your Return on Investment
When an organization has superior knowledge of the parameter values for software inspections
return on investment, it is able to derive its own ROI metric. To perform this computation,

@Copyright Don O’Neill, 2002 13 Return on Investment

simply visit the tool at http://members.aol.com/ONeillDon/nsqe-roi.html

Bibliography
[Basili/Boehm 01] Basili, Vic, Barry Boehm, “Top Ten Defect Reduction List”, IEEE
Software, January 2001

[Humphrey 97] Humphrey, Watts, “Introduction to the Personal Software Process”,
Addison-Wesley, Reading, Massachusetts, 1997

[Lindner 94] Lindner, Richard J. & Tudahl, D. "Software Development at a Baldrige
Winner," Proceedings of ELECTRO `94, Boston, Massachusetts, May 12, 1994, pp. 167-180.

[McGibbon 96] McGibbon, T., “A Business Case for Software Process Improvement”,
Rome Laboratory DACS Report, 30 September 1996.

[O’Neill 98] O’Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1997”, CrossTalk, The Journal of Defense Software Engineering, Vol. 11
No. 12, Web Addition, December 1998.

[O'Neill 99] O’Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1997”, First Annual International Software Assurance Certification
Conference, Chantilly, Virginia, 1 March 1999, pp. 1-14.

[O’Neill 95,96,00] O'Neill, Don, "National Software Quality Experiment: Results 1992-
1999", Software Technology Conference, Salt Lake City, 1995, 1996, and 2000

[O’Neill 01] O’Neill, Don, “Peer Reviews”, Encyclopedia of Software Engineering,
Wiley Publishing, Inc., January 2002

[Paulk 95] Paulk, Mark C., “The Capability Maturity Model: Guidelines for
Improving the Software Process”, Addison-Wesley Publishing Company, 1995, pp. 270-276.

[Prowell 99] Prowell, Stacy J., Carmen J.Trammell, Richard C. Linger, Jesse H. Poore,
“Cleanroom Software Engineering: Technology and Process”, Addison-Wesley Longman, Inc.,
1999, page 17, 33-90.

[Wells 01] Wells, J. Donovan, http:///www.extreme programming.org

3648 words

@Copyright Don O’Neill, 2002 14 Return on Investment

Don O’Neill
Don O’Neill is a seasoned software engineering manager and technologist currently serving as
an independent consultant. Following his twenty-seven year career with IBM’s Federal Systems
Division, Mr. O’Neill completed a three year residency at Carnegie Mellon University’s
Software Engineering Institute (SEI) under IBM’s Technical Academic Career Program.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, directing the National Software Quality Experiment, implementing Software Risk
Management on the project, conducting the Project Suite Key Process Area Defined Program,
and conducting Global Software Competitiveness Assessments.

He is a founding member of the Washington DC Software Process Improvement Network
(SPIN) and the National Software Council (NSC) and serves as the Executive Vice President of
the Center for National Software Studies (CNSS). He is a collaborator with the Center for
Empirically-based Software Engineering (CeBASE). Mr. O’Neill has a Bachelor of Science
degree in mathematics from Dickinson College in Carlisle, Pennsylvania.

Contact Information
Don O’Neill
Independent Consultant
9305 Kobe Way
Montgomery Village, Maryland 20886

email: ONeillDon@aol.com
Phone: (301) 990-0377
http://members.aol.com/ONeillDon/index.html

