
NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

1992-2002
Don O'Neill

Independent Consultant
(301) 990-0377

ONeillDon@aol.com

FEATURING

Experiment Motivation and Organization

Software Inspections Mechanism

Experiment Results

Conclusion

@Copyright Don O'Neill, 2003 1 NSQE

 NATIONAL SOFTWARE QUALITY EXPERIMENT
 A LESSON IN MEASUREMENT 1992-2001

Outline
Key Words
Figures

Opening
Prologue
Abstract

EXPERIMENT MOTIVATION AND ORGANIZATION
Executive Summary
Overview
Motivation
Measurement Best Practice
Experimental Nature of Software
Experiment Design
Experiment Verification of Method and Data

NSQE Seminar History
CeBASE Collaboration
Is the Fundamental Thesis of the Paper Flawed?

Nature and Role of the Experiment
Experiment Participants
Separating Signal from Noise
Organization of Findings

SOFTWARE INSPECTIONS MECHANISM
Setting the Standard of Excellence
Value of Software Inspections
Elements of Software Inspections
Software Inspection Lab
Database Design
Spreadsheet Expressions

EXPERIMENT RESULTS
Results Summary

Common Problems
Defect Category and Severity
Inspection Lab Operations
Defect Type Ranking
Defect Rates and Product Size
A Risk Management Application
Questions Answered in the Lab
Questions Not Yet Answered
Analysis of Results

Measurement Results by Analysis Bin
Annual Results
Software Process Maturity
Organization Type

@Copyright Don O'Neill, 2003 2 NSQE

Product Type
Programming Language
Global Region
Industry Type
Software Product Engineering Mode

Defects Per Session Metric
Lines Per Conduct Hour Metric
Defect Type Groups
Derivation of Process Metrics: Control Panels
Quality and Product Metrics
Return on Investment

Return on Investment Metric
Analysis of Annual Averages
Reasoning About Findings: Software Process Maturity
Reasoning About Findings: Organization Type
Reasoning About Findings: Product Type

Special Studies
PSP and Level 3 Comparison

CRITICAL DEFECT PREDICTION
Critical Defect, Fault, and Failure Prediction
Critical Defect Prediction Model
Project Plan
Spreadsheet Road Map
Prediction Goal, Question, Metric

CONCLUSION
Closing Observations
Sponsoring the National Experiment
Field Measurement Lessons
Next Steps
Fast Forward
Future Directions

Bibliography
Author
Contact Information

@Copyright Don O'Neill, 2003 3 NSQE

KEY WORDS
Analysis Bins Organization type
Common problems Software process maturity level
Core samples Standard of excellence Product type
Critical defect prediction Product type
Defect types Programming language
Experimentation Software Inspection Lab
Experiment participants Return on investment

FIGURES
1 Industry Type-Site Visits
2 Experiment Participant Application Domains
3 Inspection Lab Operations
4 Defect Type Distribution
5 Defect Type Group Distribution

6 NSQE Metrics by Year
6a Preparation Per Defect by Year
6b Preparation Per Major Defect by Year
6c Major Defects Per Thousand Lines by Year
6d Minor Defects Per Thousand Lines by Year
6e Size Per Conduct Hour by Year
6f Defects Per Session by Year
6g Preparation Per Conduct Effort by Year
6h Size Per Session by Year
6i Return on Investment by Year

7 NSQE Metrics by Maturity Level
7a Major Defects Per Thousand Lines by Maturity Level
7b Minor Defects Per Thousand Lines by Maturity Level
7c Lines by Session by Maturity Level
7d Lines Per Conduct Hour by Maturity Level
7e Preparation Per Conduct Effort by Maturity Level
7f Defects Per Session by Maturity Level
7g Return on Investment by Maturity Level
7h Defect Type Distribution by Maturity Level

8 NSQE Metrics by Organization Type
8a Major Defects Per Thousand Lines by Organization Type
8b Minor Defects Per Thousand Lines by Organization Type
8c Lines by Session by Organization Type
8d Lines Per Conduct Hour by Organization Type
8e Preparation Per Conduct Effort by Organization Type
8f Preparation Effort Per Major Defect by Organization Type
8g Return on Investment by Organization Type
8h Defects Per Session by Organization Type
8i Defect Type Distribution by Organization Type

9 NSQE Metrics by Product Type
9a Major Defects Per Thousand Lines by Product Type
9b Minor Defects Per Thousand Lines by Product Type
9c Lines by Session by Product Type

@Copyright Don O'Neill, 2003 4 NSQE

9d Lines Per Conduct Hour by Product Type
9e Defects Per Session by Product Type
9f Preparation Per Conduct Effort by Product Type
9g Return on Investment by Product Type
9h Defect Type Distribution by Product Type

10 NSQE Metrics Statistics

11 NSQE Metrics Sorted
11a Preparation Per Defect Sorted
11b Preparation Per Major Defect Sorted
11c Major Defects Per Thousand Lines Sorted
11d Minor Defects Per Thousand Lines Sorted
11e Lines Per Conduct Hour Sorted
11f Defects Per Session Sorted
11g Preparation Per Conduct Effort Sorted
11h Lines Per Session Sorted
11i Return on Investment Sorted
11j Defect Type Distribution

12 Control Panels
13 Return on Investment Sorted
14 Defect Leakage Model
15 Major Defects Per Thousand Versus X10 Objective

@Copyright Don O'Neill, 2003 5 NSQE

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT 1992-2001

PROLOGUE
The nation's prosperity is dependent on software. Increasingly software is depended on to
deliver value in industries of all kinds. The competition to meet time to market demands has
resulted in the practice of shipping software products with defects, and customers have
learned to accept this. The quality shortfall in the trustworthiness of the nation's software
systems is now imposing limits on the security of the nation's software infrastructure.
Consequently the nation's software industry is slipping, and it is slipping behind other
countries. The National Software Quality Experiment is riveting attention on software
product quality and revealing the patterns of neglect in the nation's software infrastructure.

ABSTRACT
In 1992 the DOD Software Technology Strategy set the objective to reduce software
problem rates by a factor of ten by the year 2000. The National Software Quality
Experiment is being conducted1 to benchmark the state of software product quality and to
measure progress towards the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of
software product quality. A micro-level national database of product quality is being
populated by a continuous stream of samples from industry, government, and military
services. This national database provides the means to benchmark and measure progress
towards the national software quality objective and contains data from 1992 through 2002.

The centerpiece of the experiment is the Software Inspection Lab where data collection
procedures, product checklists, and participant behaviors are packaged for operational
project use. The uniform application of the experiment and the collection of consistent
measurements are guaranteed through rigorous training of each participant. Thousands of
participants from dozens of organizations are populating the experiment database with
thousands of defects of all types along with pertinent information needed to pinpoint their
root causes.

To fully understand the findings of the National Software Quality Experiment, the
measurements taken in the lab and the derived metrics are organized along several
dimensions including year, software process maturity level, organization type, product type,
programming language, global region, and industry type. These dimensions provide a
framework for populating an interesting set of analysis bins with appropriate core samples
of software product quality and for deriving the statistical process control limits of each
metric.

1 The National Software Quality Experiment is an entrepreneurial activity.
@Copyright Don O'Neill, 2003 6 NSQE

EXPERIMENT MOTIVATION AND ORGANIZATION
Executive Summary
The National Software Quality Experiment (NSQE) is riveting attention on software
product quality and revealing the patterns of neglect in the nation's software infrastructure. In
1992 the DOD Software Technology Strategy set the objective to reduce software
problem rates by a factor of ten by the year 2000. The National Software Quality
Experiment is being conducted to benchmark the state of software product quality and to
measure progress towards the national objective.

A micro-level national database of product quality is being populated by a continuous
stream of samples from industry, government, and military services. Over three thousand
participants from over sixty organizations have inspected over a million lines of code and
populated the experiment database with nearly fifteen thousand defects of all types along
with pertinent information needed to pinpoint their root causes.

The results of the NSQE show no systematic movement towards fulfilling the national goal.
The quality goal has not been met and was missed by a wide margin. Instead of a factor of
ten reduction, problem rates are being pushed higher:

• With the emphasis on quicker, better, and cheaper.
• With the trend towards code and upload practice as the life cycle model.
• With the struggle to improve software process maturity and master the management

track practices found in level 2 of the Software Capability Maturity Model, an obstacle to
many [Paulk 95].

• With the downsizing of middle management and senior technical staff who often held the
line on product quality through push back.

These NSQE metrics reveal patterns of neglect in the nation’s software infrastructure. With
2.46 major defects per thousand lines of code and a major defect detected every 72.24
minutes of preparation effort, software organizations should treat these findings as a wakeup
call. Nearly 41% of all defects are related to documentation particularly the lack of traceability
from code to requirements. In fact, many software systems have no requirements baseline;
the code simply does what the code does. Over 23% of all defects are related to
compliance with programming standards and style.

Hidden in the NSQE metrics are clues and pointers to better practice. For example:
• The software inspection teams that look harder for defects are the ones that find more.

Looking harder is accomplished by reducing the size of the artifacts inspected and
increasing preparation effort.

• Program size matters. Defect density decreases with increasing size... to a point.
Starting, finishing, and fitting in are all more error prone than the body of the program
which gives it size.

• The data suggests that increased software process maturity results in increased defect
detection, with the result perhaps being lower defect leakage into the field.

• In addition the data suggests that the organization's neglect of its software process
exceeds the poor workmanship of individual programmers as the source of errors.
Documentation and standards defect types account for nearly two-thirds of all defects,
and these are the responsibility of the organization and its process.

W. Edwards Deming taught us that there is no substitute for profound knowledge. We
know that software quality is one of the fault lines of the software crisis. It is an important
leading indicator of global competitiveness. The National Software Quality Experiment
@Copyright Don O'Neill, 2003 7 NSQE

provides a framework for obtaining a profound knowledge of software quality on the
project, within the organization, and across the nation. This knowledge will contribute to the
understanding of the quality fault line.

Projects seek to achieve predictable performance. Organizations build on project
predictability and seek to be competitive. The nation builds on organizational
competitiveness in achieving prosperity. Today we find software as a key integrating
element in every industry. If projects do not achieve predictable performance and if
organizations are not competitive, the prosperity of the nation may be impacted.

Mr. Dooley2 said, “It ain’t what you don’t know that hurts you. It’s what you know that ain’t
so.” Many managers make decisions based on hearsay or myth. The National Software
Quality Experiment is helping organizations to substitute facts for myths. For example,
consider the question, “Which organizations detect more defects in software inspections,
level 1, level 2, or level 3?” The answer is found in the measured results of the National
Software Quality Experiment.

Lord Kelvin said it best, "When you can measure what you are speaking about and
express it in numbers, you know something about it; when you can not measure it... your
knowledge is meager and unsatisfactory." When it comes to software which must be bit-
perfect, Lord Kelvin's hard edged conclusion is especially warranted.

Ralph Waldo Emerson wrote, “The years teach us things the days never knew.” The
National Software Quality Experiment has operated for the past decade and is committed
to run through the year 2000. True to Emerson's adage, interesting trends are beginning to
reveal themselves. These trends may help us to better understand the practice of software
engineering.

Robert McNamara said during the Vietnam War, "If you don't watch the periphery, it will
soon become the center." The National Software Quality Experiment provides the means
to keep an eye on the periphery... and the center of software product quality.

2 Mr. Dooley was a turn of the century newspaper man in Chicago
@Copyright Don O'Neill, 2003 8 NSQE

OVERVIEW
The National Software Quality Experiment is doing more measurement at the national level
than many organizations are doing at the project level! One observer said, "All we do here
is talk about it; you are actually doing it."3 Participants are attracted to the experiment as a
place where they can calibrate their software quality against appropriately selected industry
core samples. Here they can jump-start the organization's quality measurement program on
the shoulders of uniform Software Inspection Lab procedures. These procedures are
operationally packaged for project use and include well defined processes, industrial
strength product checklists, participant roles and behaviors, and standard forms and
reports.

The National Software Quality Experiment provides the framework to pose important
quality questions. Its micro-level national quality database provides the measurements to
answer them. Similarly, the extent of certain common risks can be quantified. As a
participant in the experiment, an organization can characterize the effectiveness of its
software quality process. At the industry level, progress towards the national software
quality objective can be benchmarked.

Participants in the experiment benefit in several ways. They are able to characterize the
maturity of their software quality process. With this understanding, they are able to establish
goals for improving the process and to set priorities for immediate action. Beyond that,
these organizations are able to promote a vision for excellence based on perfection not
management slogans in their software products and to calibrate their progress towards the
national software quality goal.

MOTIVATION
The motivation for the National Software Quality Experiment is found in my industry mission
statement for strategic software improvement which includes the following:
 1. To obtain the deepest possible understanding of software engineering in all

its dimensions
 2. To arrive at a realistic expectation for its application at every level
 3. To communicate this knowledge and expectation to both producers and
consumers

Software engineering has a multiplicity of dimensions. These include engineering,
management, operations, product, process, business, and human resources to name
several. The application of software engineering can be viewed at various levels including
the nation, industry, the organization, the project, and the individual practitioner. The
experiment and its micro-level national database is structured to service particular needs at
all these levels and in all these dimensions.

The Department of Defense Software Technology Strategy was drafted for the Director of
Defense Research and Engineering in December 1991 [DOD STS 91]. Three important
national objectives were established to be achieved by the year 2000:
 1. Reduce equivalent software life-cycle costs by a factor of two
 2. Reduce software problem rates by a factor of ten
 3. Achieve new levels of mission capability and interoperability via software

Every software organization should treat the national objective to improve software product
quality by a factor of ten as a wake-up call. Are organizations planning to reduce software
problem rates by a factor of ten? Do they know what these rates are now? Industry
3 Comment made by participant in National Software Quality Experiment Seminar in 1993
@Copyright Don O'Neill, 2003 9 NSQE

problem rates ranged from 1 to 100 defects per thousand lines of source code inserted and
.1 to 10 defects per thousand lines of source code fielded. Meeting the objective would
shift the range to .1 to 10 defects per thousand lines of source code inserted and .01 to 1
fielded.

MEASUREMENT BEST PRACTICE
The strategy for obtaining the deepest possible understanding of software in an application
domain is strongly determined by the experimental nature of software and the need to
discover information. However, software engineers and computer scientists need to
conduct more experimentation using systematic and repeatable processes and need to
perform the collection and analysis of data in the confirmation of theory and hypotheses
[Tichy 98]. Field studies quantifying software practice are rare. In 612 articles in the software
literature during 1985-1995, only seven (7) were classified as field study. Half were
classified as assertions, lessons learned, and project monitoring; another third employed no
experimentation or were not applicable [Zelkowitz 98].

Although measurement is needed to derive effective policy governing acquisition,
development, and operations, there is not yet an industry consensus on the wisdom of
creating a national database for software engineering. The issue centers on the use of the
data, not on its collection. The worry is that the industry is not ready to use the database
appropriately. Clearly the industry can learn to use the database appropriately once it
exists. If there are national goals set for software engineering, there must also be a
national measurement program and database to track progress and refine goals. Carnegie
Mellon University's Software Engineering Institute produced "A Concept Study for a
National Software Engineering Database" in July 1992 [Van Verth 92]. The study points
out that there are many users for such a database, but few suppliers. The study offers the
following observations and advice on establishing a national database:
 1. Wide variance may exist in the collection process
 2. Common data definitions are needed
 3. Goals and questions should precede data collection
 4. Confidentiality of the data must be protected

In designing, implementing, and operating the National Software Quality Experiment, it is
recognized that the prescription for achieving lasting value in measurement depends on the
successful integration of measurement concepts, operationally defined and packaged
processes, effective technology transition and adoption including the training of participants
and the dissemination of results, and hands-on oversight of the experiment. The
prescription for lasting value in measurement revolves around four driving measurement
concepts. First, measurement must be aligned with business needs. Second, metrics must
be carefully pinpointed and rigorously defined. Third, measurement activities must be built
into the normal operation of the organization. Finally, extraordinary steps must be applied
to obtain consistency and uniformity in data collection.

Finally, Dr. Vic Basili of the University Maryland provides the following important guidelines
on measurement [Wallace 97], [Basili 02]:

1. Establish the goals of the data collection
2. Develop a list of questions of interest
3. Establish data categories
4. Design and test the data collection form
5. Analyze data

While there are numerous problems associated with industrial software measurement, two

@Copyright Don O'Neill, 2003 10 NSQE

problems deserve mention here. One of the difficulties in measurement is that while the
design and planning of a measurement program or experiment may be straightforward, its
implementation can be fraught with difficulties. An important consideration is the ease of
availability of the data to be collected. When the data is easily accessible as a by product
of an essential activity within the normal operation of the organization, measurements can be
greatly facilitated. When the data is difficult to obtain or requires extra steps, the
measurement program may be threatened at the outset. For example, collecting inspection
data is straightforward, collecting failure data from testing is more difficult, and collecting failure
data from the field is increasingly more difficult. A second important difficulty is sustaining a
persistent data collection long enough for interesting trends to reveal themselves. With the
fluctuating commitment to measurement as business needs change and new leaders enter
the scene, sustaining a measurement program for ten years is a challenge.

EXPERIMENTAL NATURE OF SOFTWARE
Large scale software development is research in the experimental or laboratory sense
operating within a process of experimentation where the hypotheses are organized around
function, form, and fit and the inherent uncertainty in specifying, designing, and developing
software that will operate harmoniously on the computing platforms intended for the benefit
of expected users and their enterprises. The process of experimentation is based on the
nature of the life cycle activities; their organization for iteration, prototyping, and incremental
development; and the strategies for validating and verifying the artifacts they produce.

Software development involves the discovery of information that is technological in nature,
in particular, performance in terms of execution traces, path lengths, user response times,
and integration effects both vertical and horizontal. This critical information permits the
selection of the best mix of algorithms and data structures for a particular software
component and the software system as a whole.

In developing large scale software systems, risk and uncertainty occur when the information
available to the project team is insufficient to plan or carry out fully the next step(s) in the
development process and the design and programming of the software system. These
risks stem from technical choices associated with the function, form, and fit of the software
product. And so function, form, and fit become the hypotheses in the process of
experimentation used to discover technological information needed to progress from one
life cycle activity to another:

• Function is determined through understanding the application domain and interaction with
users and the activities of requirements elicitation and determination where the goal is to
do the right job. Not all capabilities and features needed to do the right job are known
ahead of time. After the start of the project, function may be increased by important
new capabilities and features.

• Form is determined by the application domain architecture and its templates, screens
layouts, and data models organized to house the capabilities and features that comprise
the function in a way that fits the constraints of computer resources.

• Fit is determined by the supply of computer resource timing and capacity and the
demand in the load imposed by the use of the capabilities and features of the software
system and their resultant execution traces, path lengths, memory utilization, system
resource queues, and integration effects. The behavior of the system is influenced by
the interaction of this supply and demand and is evidenced by the timeliness of user
response times. Doing the job right requires obtaining the best fit which is a complex
activity requiring specialized tools capable of identifying integration bottlenecks that can
then be reprogrammed to utilize less time or memory.

@Copyright Don O'Neill, 2003 11 NSQE

Function, Form, Fit
Interaction

Form
Do the job right

• Rules of construction
• Structured Programming

Constructs
• Disciplined Data Structures

Fit
Do the job right

• Execution trace
• Path length
• User responses
• Integration effects

Horizontal Integration Vertical Integration

Do the right job
Requirements

• Elicitation
• Determination
• Analysis

Function

EXPERIMENT DESIGN
Experienced software practitioners and managers understand that software development is
a process of experimentation involving the continuous discovery of technical information
associated with the hypotheses of function, form, and fit of the software product as it moves
through the requirements, specification, design, code, test, and maintenance activities of the
life cycle. Reasoning about, understanding, and predicting the behavior of defects
experienced at different stages is the basis for managing software risk and uncertainty.

Several indicators characterize the organization capability to perform effective
experimentation. When these indicators are present and embedded in risk management
practice, the enterprise is a learning organization.These indicators include setting goals;
defining, collecting, and analyzing measurement and metrics; maintaining a repository of
results; providing feedback on results to participants and stake holders; packaging
experiment artifacts for consistent repetition; and combining multiple experiments.

The design of an experiment includes the hypothesis and questions to be answered,
factors that characterize and distinguish the context or domain of study, response variables
in the form of measurements and derived metrics, and results that correspond to the
hypothesis and address the questions.

• Some hypotheses and questions may be known early; others may be invented as
results and studies dictate and suggest.

• Factors define or characterize analysis bins individually or in combination.
• Response variables are the measurements and metrics associated with Software

Inspection Lab Operations and defect type distributions.
• The results are the association of the response variables and their measurements and

@Copyright Don O'Neill, 2003 12 NSQE

metrics to the hypotheses and questions and the judgments that are made.

As a software manager on several large scale software projects, there were many
questions to which I sought answers. Some of these questions are asked and answered in
the experiment including:
1. To what extent is there a continuing stream of requirements changes?
2. What are the leading types of errors?
3. Are errors traced to people or process?
4. Is a standard development process followed?
5. To what extent are wrong software functions being developed?
6. To what extent are there shortfalls in real time performance?
7. Is gold plating a problem?

Other questions of interest are not answered in the experiment. For example:
1. What types of defects are present in fielded software products?
2. To what extent do users encounter defects in fielded software products?
While a study focusing on delivered defects would be useful and interesting, this is beyond
the scope of the National Software Experiment which depends solely on the engine of
software inspections for its data collection and does not utilize defect data from testing or
field experience.

NATURE AND ROLE OF THE EXPERIMENT
Experiment is defined as, "A test made to demonstrate a known truth, to determine the
validity of a hypothesis" [AHDEL 76]. The DOD Software Technology Strategy has
provided the basis for the hypothesis that should be tested for validity: "That software
problem rates shall be reduced by a factor of ten by the year 2000".

A process of experimentation involves alternatives and choices. Over time, experiment
findings are reported and may be acted upon, software practice improvements may be
made, and the experiment may become closed loop.

In the practice of software engineering, managers are guided more by myth than by
measurement. The experiment provides the framework for measuring critical aspects of
software product quality practice. The framework supplies the ingredients needed to install
a uniform and consistent measurement methodology. These are thoroughly described in
the Software Inspections Mechanism. The predictability of the measurements taken in
conducting the experiment provides the basis for assessing the validity of the hypothesis.
This is discussed in Experiment Results.

Some of the questions asked and answered in the experiment are:
 1. To what extent is there a continuing stream of requirements changes?
 2. What are the leading types of errors?
 3. Are errors traced to people or process?
 4. Is a standard development process followed?
 5. To what extent are wrong software functions being developed?
 6. To what extent are there shortfalls in real time performance?
 7. Is gold plating a problem?

Software inspections are an essential ingredient in fact-based software management. They
utilize a reasoning process for conducting a fine-grained, deep-probing evaluation. When
combined with automation-based quick-look evaluations, the best balance between
efficiency and insight can be obtained. Once installed in the organization, the software

@Copyright Don O'Neill, 2003 13 NSQE

inspection process yields core samples of software product quality. These can be used to
benchmark problem rates by defect type among major product areas within the
organization. With the benchmark measurements in place, the software inspections
process provides a stable, uniform, and persistent mechanism for measuring improvement
progress toward the software product goals of the organization.

The National Software Quality Experiment is an ambitious program to define, create, and
mange a National Software Engineering Database of software product quality core
samples. This micro-level national database is being populated using data collection
procedures packaged for operation in the Software Inspection Lab. These core samples
of software problem rates provide the foundation to benchmark and measure progress
towards the national software quality objective. The comprehensive structure and rigorous
definition of the experiment are needed to provide a stable and persistent mechanism for
measuring progress to the year 2000 objective. The experiment itself is a lesson in
measurement.

Bridging the gap of prediction practice among defects, faults, and failures remains an
unsolved problem. Defects are detected early using software inspections as exit criteria for
activities in the software life cycle. Faults are detected later through exercise during
integration and system test. Failures occur even later during system operation. Yet there is
no accepted method for using defect data available early to predict faults and failures that
occur later.

The National Software Quality Experiment with its Software Inspection Lab and its
repository of core samples uses defect detection to derive metrics capable of calibrating
defect leakage prediction and defect leakage type distribution. The question is, “To what
extent are Software Engineering Error Prediction Models capable of utilizing defect leakage
prediction and defect leakage type distribution to predict faults and failures?” These models
include both error count models and time between models.

Verification of Method and Data
The software inspections method used to collect the NSQE data is detailed in the Wiley
Publishing Encyclopedia of Software Engineering [O'Neill 02]. The verification of methods
used, data collected, results analyzed is accomplished in he following ways:
1. I have attended every inspection session included in the experiment.
2. Organizations utilize the upper and lower control limits derived from the NSQE metrics in
their software inspection operations on the factory floor to guide and control the inspections
practice.
3. Analysis results and reports are presented at various professional meetings and
conferences and in professional journals. The most recent example is the "Return on
Investment Using Software Inspections" study presented at the 11th ICSQ in Pittsburgh
just this week [O'Neill 01] and the
4. The National Software Quality Experiment results were shared with the research
community associated with the Center for Empirically based Software Engineering
(CeBASE).

NSQE Seminar History
The results of the National Software Quality Experiment have been reported to industry in
dozens of seminars over the past decade. The venues used for disseminating these
results have included the Association for Software Quality Control, the Association for
Software Quality, the International Conference of Software Quality, the Software
@Copyright Don O'Neill, 2003 14 NSQE

Technology Conference, the Quality Week Conference, the Quality Week Europe
Conference, the NASA Software Engineer Workshop, the International Conference on
Software Process Improvement, the Software Developer’s Conference, and many
Software Process Improvement Network sessions.

QAAM ‘93 Columbia, Md.
Process Conference ‘94 Washington, D.C.
ASQC International ‘94 Washington, D.C.
ICSQ International ‘94 Washington, D.C.
STC ‘95 Salt Lake City, Utah
STC ‘96 Salt Lake City, Utah
QW ‘97 San Francisco, Ca.
QWE ‘97 Brussels, Belgium
NRC ‘98 Rockville, Md.
HRSPIN ‘98 Virginia Beach, Va.
NASA SEW ‘98 Greenbelt, Md.
CrossTalk, 12/98- Web version Salt Lake City, Utah
AAQ ‘99 (Backup) Washington, D.C.
ISACC’99 Chantilly, Virginia
SSQ 11/99 Herndon, Virginia
ASQ ‘00 Rockville, Md.
STC ‘00 Salt Lake City, Utah
DC SPIN ‘00 Washington, DC
NJ SPIN ‘00 Rutgers University, NJ
Greater B’more SPIN ‘01 UMBC, Baltimore, Maryland
11th ICSQ Pittsburgh, Pennsylvania
Software Education Associates Ltd. ‘02 Wellington, New Zealand
Software Education Associates Ltd. ‘02 Melbourne, Australia
1st ICSPI, ‘02 Washington, D.C.
New Jersey SPI Conference, ‘03 Woodbridge, NJ

CeBASE Collaboration
The National Software Quality Experiment results were shared with the research community
associated with the Center for Empirically based Software Engineering (CeBASE). This is
an National Science Foundation (NSF) sponsored initiative consisting of the University of
Maryland, University of Southern California, Fraunhofer Center Maryland, University of
Nebraska Lincoln, Mississippi State University.

CeBASE seeks to achieve an empirically based process and experience base that
contains validated guidelines for selecting techniques and models. One focus of this
research is defect reduction techniques. CeBASE is co-directed by Dr. Victor R. Basili and
Dr. Barry Boehm who jointly authored the article on the ten questions on software defects
that formed the basis for the study [Basili/Boehm 01]. The CeBASE web site
(http://www.cebase.org) contains resources for empirical researchers and practitioners, such
as tools, data, reports and experimental results.

Is the Fundamental Thesis of the Paper Flawed?
A reviewer of the paper asserted that the fundamental thesis of the paper was flawed. I
would like to air the reviewer’s concern and my response to it because it may help others to
avoid the same misunderstanding. Here is what the reviewer said, “The fundamental thesis
of the paper that there is a national quality objective and progress towards achieving that

@Copyright Don O'Neill, 2003 15 NSQE

objective can be tracked via results from inspection training is flawed. A DOD objective is
not a national objective. By definition training is provided to people who are unfamiliar with
a skill, so it is unreasonable to assume that improvement could be detected through results
of subsequent training sessions. The paper could be useful as a benchmark of inspection
process performance and should be re-focused in that direction.” The 1992 DOD objective,
of course, is to reduce software problem by a factor of ten by the year 2000.

In response, I must acknowledge that a DOD objective is not be a national objective.
When it comes to software there is no national software policy, there is no national software
authority, there are no national software goals, and in fact there is even an absence of
consensus among the leaders of profession on the principles of software engineering and
its university curriculum. Consequently when it comes to software, a DOD objective is the
closest thing to a national objective. But in the interest of correctness, I have conceded to
the use of “DOD objective” instead of “national objective”.

Now to respond to the substance of the reviewer’s concern which represents a basic
misunderstanding of what is being measured and what is doing the measurement, the
improvement being tracked by the National Software Quality Experiment is software
product engineering improvement, not improvement in the practice of software inspections.
Defects are inserted in the practice of software product engineering; defects are detected in
the practice of software inspections. Therefore, it is the hoped for improvement in software
product engineering practice that is being measured, and it is software inspections practice
that is the measurement mechanism.

The widespread collection of core samples from over sixty organizations spanning over a
decade is expected to reveal industry improvement as evidenced by fewer defects
inserted during the practice of software product engineering. If fewer defects are inserted,
then fewer defects would be detected during software inspections assuming that a uniform
process for software inspections [O'Neill 88] is followed and that participants received the
same training [O'Neill 89]. This commonality in software inspections practice is in fact true.
The same industrial strength software inspections process [O'Neill 02] and the same training
program with the same instructor were carried out for over a decade. Exactly 157 course
sessions trained over 3,308 participants who conducted 3,040 software inspection
sessions producing the data for the experiment. However, the hoped for order of
magnitude reduction in problems from software product engineering practice did not
materialize. Nevertheless, the software inspections process metrics collected and analyzed
in the National Software Quality Experiment are providing a useful performance benchmark
for those engaged in software inspections practice.

@Copyright Don O'Neill, 2003 16 NSQE

EXPERIMENT PARTICIPANTS

The participants of the National Software Quality Experiment have been trained in the
Software Inspections Course and Lab [O'Neill 89]. Experiment results are drawn from
these Inspection Lab sessions. Over fifty participating organizations span government,
DOD industry, and commercial sectors and represent a wide range of application domains
and product types. The industry types represented include telecommunications,
transportation, financial, manufacturing, medical systems, utilities and energy, defense, and
e-commerce.

• Accounting, personnel, administration
• Administrative and management decision

support
• Airline operations support
• Aircraft jet engine diagnostics, logistics,

and maintenance
• Air travel reservations
• Artillery fire control system
• Avionics flight on-board control
• CIO Support
• Control devices for avionics applications
• Credit card application
• Department of State embassy support
• e-commerce
• Electronic warfare
• Energy operations management
• FAA communications

• Factory line support
• Finance and accounting services
• Global positioning system user sets
• Government payment system
• Information and accounting
• Insurance and medical information
• Insurance brokering
• International banking
• Joint Chiefs of Staff support
• Medical devices and diagnostics
• Medical information system
• Naval surface weapons system
• Pre and post flight space application
• Securities trading
• Stock market back office operations
• Telecommunications
• Small tool manufacturing

@Copyright Don O'Neill, 2003 17 NSQE

22.7%

20%

21.3%

9.3%

8%

6.7%

4%
2.7% 5.3%

Industry Type- Site Visits

DOD Industry

Government

Financial

Manufacturing

E-Commerce

Transportation

Medical

Telecommunications

Energy and Utilities

The participants and their applications are listed below:
A Communications
B Finance, personnel, administration
C Command and control center
D Pre and post flight space application
E Command and control center
F Avionics flight on-board control system
G Administrative and management decision support
H Medical information system
I Global Positioning System user set
J Joint Chiefs of Staff support
K Avionics flight on-board control system
L Artillery fire control system
M Surface ship command and control
N FAA communications
O Communication command and control
P Naval surface weapons system
Q Control devices for avionics applications
R Control devices for commercial applications
S Aircraft jet engine diagnostics and maintenance
T Financial services
U Insurance and medical information systems
V Government accounting

@Copyright Don O'Neill, 2003 18 NSQE

W Aircraft logistics and maintenance
X Telecommunications
Y Aircraft jet engine diagnostics and maintenance
Z FAA Air traffic control
AA Financial services
AB Naval surface weapons system
AC International banking
AD Electronic commerce
AE Credit card application
AF Department of State embassy support
AG Factory line support
AH-AJ Credit card application
AK Factory line support
AL Electronic warfare
AM Medical diagnostics
AN Medical devices
AP Financial systems
AQ Information and accounting
AR Manufacturing
AS International banking
AT Insurance brokering
AU Air travel reservations
AV Finance and accounting services
AW International banking
AX Securities trading
AY Airline operations support
AZ e-commerce
BA CIO support
BB Energy operations management
BC Information Systems
BD Small tool manufacturing
BE FAA communications
BF Government payment system

SEPARATING SIGNAL FROM NOISE
While the National Software Quality Experiment faithfully conforms to the well defined
Software Inspections Process [O'Neill 02] which has achieved stability through long term
use, the Software Product Engineering (SPE) processes [Paulk 95] that produce the
artifacts being inspected may not be stable and may lack faithful conformance.

The variation in process performance includes both process noise and process anomalies.
The degree to which the SPE processes are stable and conforming is the degree to which
process noise is minimized [SEI 97].

ORGANIZATION OF FINDINGS
The findings of the National Software Quality Experiment are organized along several
dimensions including year, software process maturity level, organization type, product type,
programming language, and global region. These dimensions provide a framework for
populating an interesting set of analysis bins with appropriate core samples of software
product quality.

@Copyright Don O'Neill, 2003 19 NSQE

National
Software
Experiment
Participants

SOFTWARE INSPECTIONS MECHANISM
Setting the Standard of Excellence
The industry continues to evolve the definition of quality and the indicators of a mature
quality process. Early on, conformance to requirements was recognized as an important
quality characteristic. The software product must satisfy every "shall" in the requirements
document. To this has been added the characteristic of defect-free [Joyce 89]. A software
product is considered defect-free when it attains Six Sigma quality, which is three to four
errors per million opportunities to fail. Conformance to requirements and defect-free
characteristics are necessary but not sufficient conditions. More is needed.

Customer satisfaction is the quality characteristic that now occupies center stage. Customer
surveys and feedback cover all aspects of the software product including engineering,
construction, operations, and support. To this is being added the characteristic of value.
Value is applying the best capability of the organization to what the customer needs most.
Where the organization's strategic planning process operates to continue to align its
capabilities with customer needs, the maturity of its quality process is ranked high.

Measuring the quality of an evolving software product can be accomplished by conducting
strict and close examinations of its requirements, specification, architecture, design, code,
and test artifacts. The quality characteristics measured using this software inspection
mechanism include conformance to requirements and defect detection and leakage among
baseline artifacts. Other mechanisms are needed to measure customer satisfaction and
value characteristics.

In producing software systems that meet customer needs, it is necessary to do the right
job and to do the job right. Software inspections address the issues of construction and
workmanship needed to do the job right. This is done by setting the standard of excellence
and then disciplining the organization to meet the standard set. Simply setting the standard
changes the calculus of software product quality. The attention of the organization's
practitioners, project manager, and senior managers will be riveted on software product
quality.

Software inspections practice employs the strongly preferred indicators from the standard
of excellence spanning completeness, correctness, style, rules of construction, and multiple
views.

• Completeness is based on traceability among the requirements, specifications,
designs, code, and test procedures.

• Correctness is based on reasoning about programs through the use of informal
verification and correctness questions derived from the prime constructs of structured
programming, their composite use in proper programs, and the disciplined data
structures they manipulate [Linger 79].

• Style is based on project specified style guidance for block structuring, naming
conventions, commentary, alignment, and templates for repeating patterns.

• Rules of construction are based on the software architecture and the specific protocols,
templates, and conventions used to carry it out.

• Multiple views are based on the various perspectives required to be reflected in the
product including the programmer, tester, user, computer resource loading as well as

@Copyright Don O'Neill, 2003 20 NSQE

safety, security, and the earlier year 2000 problem [Basili 96].

VALUE OF SOFTWARE INSPECTIONS
Software inspections4 provide an immediate and concrete step that every organization can
take to improve its process maturity. They provide a powerful mechanism for improving
software product quality by detecting and correcting defects early and preventing their
reoccurrence. Software inspections accomplish this by conducting close and strict
examinations of software requirements, specification, design, code, and test artifacts. They
provide a vantage point for fact based software management, one not occupied by
designers, programmers, and testers.

Organizations are increasingly using software inspections as an integral process in the
development of quality software. The installation of a software inspections process initially
results in detecting 50% of the inserted errors. As an organization acquires skill and refines
its process, the detection rate increases to 60-90% within eighteen months. The cost to
correct defects found in testing greatly exceeds the correction cost following an inspection.
In fact, IBM Rochester, winner of the Malcolm Baldrige Award, reported that defects leaking
from code to test cost nine times more to detect and correct, and defects leaking from test to
the field cost thirteen times more [Lindner 91]. Consequently, the application of an industrial
strength software inspections process reduces development costs, shortens delivery
schedules, and promotes higher reliability of operational software products in the field.

The measurement mechanism used in the National Software Quality Experiment adapts
and packages the defined processes, product checklists, participant behaviors, defect
type definitions, and reports found in software inspections into an integrated operation. The
result is a measurement tool that can be applied uniformly and consistently using
participants from projects trained for their roles in the Software Inspection Lab.

An example may help illustrate why a leaked defect costs more. A code defect that leaks
into testing may require multiple test executions to confirm the error and additional
executions to obtain debug information. Once a leaked defect has been detected, the
producing programmer must put aside the task at hand, refocus attention on correcting the
defect and confirming the correction, and then return to the task at hand. The corrected artifact
must then be reinserted into the software product engineering or product release pipeline
[O'Neill 03].

ELEMENTS OF SOFTWARE INSPECTIONS
The elements of the Software Inspections Process include a structured review process,
defined roles of participants, system of checklists, and forms and reports [O'Neill 02].
These are fully described in the article on “Peer Reviews” found in the Encyclopedia of
Software Engineering Second Edition, John Wiley &Sons, Inc., January 2002. This article
can be viewed at http://members.aol.com/ONeillDon/nsqe-assessment.html.

• A structured review process is a systematic procedure integrated with the activities of
the life cycle model selected. The process is composed of planning, preparation, entry
criteria, conduct, exit criteria, reporting, and follow up [Fagan 76], [Gilb 93].

• The role of each participant in the structured review process is defined. These roles
include the moderator, producer, reader, recorder, reviewer, and manager. Each role is
characterized by particular skills and behaviors [Freedman 90] .

4 Software inspections were pioneered by Michael Fagan at IBM in the 1970's
@Copyright Don O'Neill, 2003 21 NSQE

• A system of checklists govern each step of the structured review process and the
review of the product itself, objective by objective. Process checklists are used as a
guide for each activity of the structured review process. Product checklists house the
strongly preferred indicators that set the standard of excellence for the organization’s
software products [O’Neill 88].

• Forms and reports provide a uniformity in recording issues at all software inspections,
reporting the results to management, and building a data base useful in process
management. Data collection utilizes three recording instruments: Inspection Record,
Inspection Reporting Form, and Report Summary Form. [Ebenau 94].

STRUCTURED REVIEW PROCESS
Planning is done by management early in the project. Planning identifies the life cycle
activities and product artifacts including top level designs, detailed designs, and code to be
inspected. The schedule for each software inspection is recorded in the project's software
plan. A moderator is assigned to each software inspection, and moderator training is
scheduled as necessary.

Preparation is done by the moderator a few weeks before the inspection. The readiness
of the product for inspection is assessed. The moderator obtains the reader, recorder, and
reviewers and instructs them on their roles. The moderator ascertains the status of the
baseline change activity. The overview session is conducted and the review materials are
distributed to all participants.

Entry Criteria are checked by the moderator on the day of the review. Before the
software inspection begins, the moderator must be certain that the product is ready to be
inspected and that the participants are ready to inspect it. The moderator verifies that
trained and briefed participants are in place that all participants have received the product
and checklists. The recorder notes the preparation time spent by each participant. Finally
any changes to the baseline are identified. Where the entry criteria are not met
satisfactorily, the moderator may reschedule the inspection.

The inspection is conducted by the moderator, recorder, producer, reader, and reviewers;
the manager and the consumer do not attend. Some key principles govern participant
behavior during the inspection conduct:

 1. The product is reviewed, not the person.
 2. The inspection is limited to periods of peak concentration, usually 2-4 hours.
 3. Issues are identified, not proposed solutions.

Each product component is inspected using each checklist. Participants have prepared for
the inspection. Each participant in turn is asked whether there is an issue for the product
component and checklist now before the group. If so, the issue is stated and recorded.
The producer may wish to obtain clarification of the issue at the time it is raised, but there is
no need for the producer to defend or even explain the approach taken. The producer will
have the opportunity to resolve the issue during the fillip activity.

Exit Criteria are checked by the moderator at the close of the inspection. The moderator
verifies that all product components and checklists have been reviewed. Reviewers are
asked if there are any additional issues to be raised. The recorder then reads all the issues
raised. The producer is given the opportunity to make any closing comments. This
concludes the participation of the reader and reviewers.

@Copyright Don O'Neill, 2003 22 NSQE

The moderator, with the help of the recorder, reports the results to management within a
week or so. This report provides a review summary, statistics on the inspection process,
key issues, and fillip recommendations. This concludes the participation of the moderator
and recorder.

The followup rework on the product is performed by the producer. The process is
managed by the manager in the usual way.

DEFINED ROLES OF PARTICIPANTS
The manager is active in the planning, preparation, reporting, and fillip activities. In
planning, the manager identifies and schedules all software inspections in the project's
software plan. The manager identifies resource needs and allocates them to each
inspection. Moderators are assigned, and moderator training is arranged. The manager
does not attend the conduct activity. After the software inspection is conducted, the
manager receives the report and oversees any fillip.

The producer is active during the preparation, entry criteria, conduct, exit criteria, and fillip
activities. The producer is responsible for creating the materials to be inspected. The
producer attends the inspection as a reviewer and is expected to raise
issues. From time to time the producer may offer a technical explanation of the product.
The producer expects criticism of the product but does not offer any defense as issues are
raised. Where an issue is surfaced that is not understood by the producer, a dialogue may
be needed to obtain clarification. At the conclusion of the conduct activity, the producer is
afforded the opportunity to comment on the inspection. The producer performs the fillip
actions resulting from the inspection.

The moderator is the keystone of the software inspection process and is active in the
preparation, entry criteria, conduct, exit criteria, and reporting activities. The moderator
directs the activities of the software inspection. The moderator briefs all participants of the
inspection on their roles in the structured review process and administers the preparation
activity including an overview meeting. The moderator directs the entry criteria, conduct, and
exit criteria activities, facilitating interaction among the participants. The moderator
intervenes as little as possible but as much as necessary to ensure an effective and
efficient software inspection. A skillful moderator recognizes the needs of the various
participants and restrains any intervention until it is clearly required. Moderators who limit
intervention enhance the feeling of responsibility of each participant and give real meaning
to the term "peer review". The moderator collaborates with the recorder in preparing the
report

The recorder is active in the preparation, entry criteria, conduct, exit criteria, and reporting
activities. During the entry criteria activity the recorder notes the preparation time of each
participant. The recorder notes all issues and concerns raised by the participants of the
inspection. For each issue, the recorder captures a description of the issue, the location in
the product, the checklist and entry that prompted the issue, and other defect and resolution
attributes. The role of recorder is to be transparent to the process of conducting the
inspection in recording all issues completely and accurately. This requires a high degree of
judgment and technical knowledge.

The reader is active in the preparation, entry criteria, conduct, and exit criteria activities.
Where necessary, the reader may read parts of the the product aloud to the other
participants of the inspection. This permits the producer to assume a low profile and

@Copyright Don O'Neill, 2003 23 NSQE

minimizes the need for producer-reviewer interaction, thereby promoting ego less
programming. The reader helps the group to focus attention on the relevant parts of the
product. The reader is not expected to read line by line. This may be necessary at times
when difficulties are encountered in a section of the product artifact. The reader may instead
direct attention to a program unit or a construct.

The reviewers are active in the preparation, entry criteria, conduct, and exit criteria activities.
A reviewer is expected to spend sufficient time preparing and to raise issues and concerns
about the product. Reviewers accept the discipline imposed by the round robin, checklist
structure of the inspection. In return for accepting these responsibilities and disciplines,
reviewers are assured of an uninterrupted opportunity to raise issues.

SYSTEM OF CHECKLISTS
Completeness is based on traceability among the requirements, specification, design,
code, and test artifacts. Completeness analysis reveals what predecessor artifact sections
have not been satisfied as well as the inclusion of extra fragments.

1. Has traceability been assessed?
 2. Have all predecessor requirements been accounted for?
 3. Were any product fragments revealed not to have traceability to the

predecessor requirements?

Correctness is based on reasoning about programs through the use of informal
verification and correctness questions derived from the prime constructs of structured
programming and their composite use in proper programs. Input domain and output range
are analyzed for all legal values and all possible values. Adherence to project specific
disciplined data structures is analyzed.
 1. Is the function commentary satisfied?
 2. Does the loop terminate?
 3. Is a one time loop acceptable?
 4. Is the control variable modified in the loop?
 5. Is the loop initialized and terminated properly?
 6. Is the domain partitioned exclusively and exhaustively?
 7. Does the input domain span all legal values?

Style is based on project specified style guidance based on block structured templates.
Semantics of the design and code are analyzed for correspondence to the semantics used
in the requirements, specifications, and design. Naming conventions are checked for
consistency of use; and commentary, alignment, upper/lower case, and highlighting use
are checked.
 1. Are style conventions for block structuring followed?
 2. Are naming conventions followed?
 3. Do the semantics of the product correspond with the requirements?
 4. Are style conventions for commentary followed?

Rules of construction are based on the software architecture and its specific protocols,
templates, and conventions used to carry it out. For example, these include interprocess
communication protocols, tasking and concurrent operations, program unit construction, and
data representation.
 1. Are guidelines for program unit construction followed?
 2. Is the interprocess communication protocol followed?
 3. Are data representation conventions followed?

@Copyright Don O'Neill, 2003 24 NSQE

Multiple views are based on the various perspectives required to be reflected in the
product. During execution many factors must operate as intended including initialization,
timing of processes, memory use, input and output, and finite word effects. In generating
the software, packaging considerations must be coordinated including program unit
construction, program generation process, and target operations. Product construction
disciplines of systematic design and structured programming must be followed as well as
interfaces with the user, operating system, and physical hardware.
 1. Have execution considerations been assessed including timing, memory
use, input and output, initialization, and finite word effects?
 2. Have packaging considerations been assessed including program unit
construction, program generation process, and target operations?
 3. Have user interface considerations been assessed?

FORMS AND REPORTS
All data collected and reported during the Software Inspections Process is recorded by the
recorder. This includes data about the product being inspected and about the inspection
process itself. The value of the experiment hinges on the uniformity and consistency of the
recording process. The requirements for data collection are carefully defined and are an
important part of the training for the Software Inspection Lab. There are three recording
instruments: Inspection Record, Inspection Reporting Form, and Report Summary Form.

The Inspection Record gathers data about the conduct of the process in the Software
Inspection Lab. The name of the project, the specific product component, and the date
of the inspection session are recorded. The size of the product is recorded. This metric is
defined as the number of non-blank lines. Where an organization has an established
definition for a line of code, this metric is recorded. Each participant is listed by name and
identified by role including moderator, recorder, reader, reviewer, and producer. During the
entry criteria process, the recorder asks each participant to state the number of minutes of
inspection preparation effort expended, and this is recorded. Each product checklist
selected for use in this session is noted. The time spent in the inspection conduct is
recorded as the wall clock time for the start and end of the session.

The Inspection Reporting Form gathers data about each issue raised in the inspection
session. In addition to a description of the issue, important information about the issue is
collected . Each issue is assigned a sequence number. In inspecting a product component,
several units may be inspected in a session. The component unit name is recorded. The
page and line number pinpointing the issue is entered. Where page and line numbers are
not present, the pages are numbered manually; and page position is identified as top,
middle, bottom. The checklist name and entry number most closely corresponding to the
issue are entered, for example, completeness and correctness. A defect category is
assigned as missing, wrong, or extra. A defect severity is assigned as major or minor. The
appropriate defect type is assigned.

Defect type definitions include:
Interface: error in parameter list

 Data: error in data definition, initial value setting, or use of disciplined data
structures and their operations
 Logic: error revealed through informal correctness questions spanning prime

constructs of structured programming
 I/O: error in formatting, commanding, or controlling I/O operations

Performance: error in managing or meeting constraints in computer resource
allocations and capacities for CPU, memory, or I/O

@Copyright Don O'Neill, 2003 25 NSQE

Functionality: error in stating intended function or in satisfying intended
function through refinement and elaboration

Human Factors: error in externally visible user or enterprise interface or
interaction
 Standards: error in compliance with product standards for construction or
integration including programming style guidelines, open system interfaces, or
guidelines for the application domain architecture

Documentation: error in guidance documentation
Syntax: error in language defined syntax

 Maintainability: Error in good practice impacting the supportability and
evolution of the software product

Other: any other error

Defect types discontinued include:
Test Environment: Limitation, incompatibility, or error in test bed
Test Coverage: Shortfall in requirements or functionality covered by test

exercisers

The Report Summary Form is constructed at the close of the inspection session. It is a
frequency count of issues presented as a matrix of defect types by defect severity (major,
minor) and defect category (missing, wrong, extra). This form serves several purposes.
Since it cannot be constructed unless the recorder has completed the Inspection Reporting
Form, it serves as an on the spot check of the recorder. Once completed, weaknesses are
highlighted and some opportunities for defect prevention suggest themselves. When the
results of enough inspection sessions are overlayed on the Report Summary Form, these
frequency counts divided by the total defects can serve as the probability of occurrence
for each defect type, defect severity, and defect category.

@Copyright Don O'Neill, 2003 26 NSQE

SOFTWARE INSPECTION LAB
The centerpiece of the National Software Quality Experiment is the Software Inspection
Lab [O'Neill 89]. Here data collection procedures, product checklists, and participant
behaviors are packaged for operational use. In order to ensure the uniform application of
the experiment and the collection of consistent measurements, each participant is trained in
the Software Inspections Process. This course is composed of one day of lecture,
prerecorded video, and student participation focusing on the elements of software
inspections followed by the Inspection Lab.

Learning to organize and conduct software inspections involves learning both knowledge
and skills. Basic knowledge of software engineering, of models of software engineering
processes, and of how programs can be verified within them is essential to understanding
why and how software inspections can be effective. Knowledge of the steps and
elements of the software inspection process as well as the skills involved in performing
them form the basis for organizing the process in a specific organization and project. Finally,
various performance and human relations skills are involved in actually conducting software
inspections. Such skills are best learned through a sequence of verbal understanding,
modeling, and practice.

To apply the behavior, skills, and knowledge acquired during day one, the Inspection Lab
provides the opportunity for each participant to play each defined role. In this way, the
concepts learned are put to immediate use in a realistic situation, difficulties are encountered
and overcome, and the confidence to reapply these skills on a real project is developed.
The realism of the Inspection Lab is achieved by requiring each participant to bring five to
ten pages of actual detailed design or code to be inspected.

Planning for the lab takes place at the close of the day one session. The outcome of this
planning session is the assignment of a defined role for each participant in each inspection
session. Everyone is expected to prepare for the lab by reviewing the detailed design or
code to be inspected for compliance with product checklists.

In the conduct of the Inspection Lab, inspections are conducted on each artifact. Each
participant plays the defined role assigned for each inspection. The recorder collects all the
data using the standard forms and reports. This includes an identification of each participant
by name and role, the preparation effort applied, the wall clock time of the inspection
session, the product component name, and size of the artifact being inspected. During the
conduct process, the recorder describes each issue along with information on defect type,
category, severity, and origin. The issue data collected is tabulated into a summary matrix at
the close of the inspection session.

The moderator is assisted in the operation of the Inspection Lab by the checklist entries for
entry criteria, conduct, and exit criteria. The checklist entries defining the conduct of the lab
include:

Entry Criteria
 1. Has the preceding life cycle been concluded?
 2. Are review participants in place and briefed?
 3. Have all participants received all the review materials and checklists?
 4. How many minutes of preparation did each participant perform?
 5. Are there any changes to the baseline?

Conduct

@Copyright Don O'Neill, 2003 27 NSQE

 1. Are there any issues in completeness?
2. Are there any issues in correctness?
3. Are there any issues in style?
4. Are there any issues in rules of construction?
5. Are there any issues in multiple views?
6. Are there any issues in technology?

Exit Criteria
 1. Have all product elements been inspected?

2. Have all checklists been processed?
3. Have the inspection results been recorded?
4. Would the recorder read back the issues?
5. Have metrics been collected?
6. What should be the disposition of the inspection?
7. Would the producer like an opportunity to comment?

After all the inspections have been conducted and the data collected, participants may
analyze the results to identify root causes of defects discovered in order to prevent
their reoccurrence. The ranking of defect types by defect frequency provides a clear
indication of any patterns of neglect.

@Copyright Don O'Neill, 2003 28 NSQE

DATABASE DESIGN
The database for the National Software Quality Experiment has been created and is being
sustained as a steady stream of core samples of software quality is entered. Findings are
analyzed and reported on an annual basis.

The database is organized by organization, year, software process maturity level,
organization type, product type, programming language, global region, and industry type.

Database Field Definitions
1. Organization

Anonymous identifier
Organization name

2. Year [pre-1992-2000]
3. Software Process Maturity Level [Level 1-3]
4. Organization Type

Commercial
DOD Industry
Government

5. Product Type
Embedded
Organic
Packaged

6. Programming Language Type
Old Style
Modern

7. Global Region
North America
Asia Pacific
Europe
Latin America

8. Industry Type
Telecommunications
Transportation
Financial
Manufacturing
Medical Systems
Utilities and Energy
Defense

9. Application
10. Process Measurement

Preparation Effort in Minutes
Conduct Time in Minutes
Major Defects
Minor Defects
Size in Lines of Code
Size in Pages
Number of Participants

11. Process Metrics
Preparation Effort Per Defect
Preparation Effort Per Major Defect
Major Defect Per Thousand Lines
Minor Defects Per Thousand Lines

@Copyright Don O'Neill, 2003 29 NSQE

Size Per Conduct Hour
Defects Per Session
Preparation Effort/Conduct Effort
Lines Per Session
Return on Investment

12. Defect Type
Interface
Data
Logic
I/O
Performance
Functionality
Human Factors
Standards
Documentation
Syntax
Maintainability
Other

@Copyright Don O'Neill, 2003 30 NSQE

Spreadsheet Expressions
1. Consider the raw data being provided as proprietary
2. Defect type data is missing on early instances and a few later ones
3. Some changes in defect type definitions

-Test Environment and Test Coverage defect types fall out of usage
-Maintainability defect type was added

4. Spreadsheet road map and expressions:
 A Title analysis bin name
 B Prep Effort minutes
 C Conduct Time minutes of wall clock time
 D Major Defects affecting execution
 E Minor Defects not affecting execution
 F Lines of Code non-blank lines
 G Pages of Doc pages
 H Sessions number of inspections
 I Prep/Defect "=B/(D+E)"
 J Prep/Major "=B/D"
 K Major/Size "=D/(F/1000)"
 L Minor/Size "=E/(F/1000)"
 M Size/Conduct "=F/(C/60)"
 N Defects/Session "=(D+E)/H"
 O Prep/Conduct “=B/(C*4)”
 P Return on Investment “=((D*9)+E)/((B+(C*4))/60)”

Notes:
1. B through H, General numeric format
2. I through P, Fixed Numeric format, Precision 2
3. I through P, Graphs using Bar Format using Labels shown
4. I through P cell expressions include row number, ie, =B10/(D10+E10)

@Copyright Don O'Neill, 2003 31 NSQE

EXPERIMENT RESULTS
RESULTS SUMMARY
Ralph Waldo Emerson said, "The years teach us things the days never knew". The
National Software Quality Experiment has been accumulating a steady stream of core
samples for its micro-level national database. These results have provided a benchmark of
software product quality measurements useful in assessing progress towards the national
software quality objective for the year 2000. These results are highlighted below in the
discussion of the common problems pinpointed, defect category and severity data
summary, Inspection Lab operations, and the ranking of defect types.

Common Problems
Analysis of the issues raised in the experiment to date has revealed common problems
that reoccur from session to session. Typical organizations which desire to reduce their
software problem rates should focus on preventing the following types of defects:
 1. Software product source code components are not traced to requirements.

As a result, the software product is not under intellectual control,
verification procedures are imprecise, and changes cannot be managed.

 2. Software engineering practices for systematic design and structured
programming are applied without sufficient rigor and discipline.

As a result, high defect rates are experienced in logic, data, interfaces,
and functionality.

 3. Software product designs and source code are recorded in an ad hoc style.
As a result, the understandability, adaptability, and maintainability of the
software product are directly impacted.

 4. The rules of construction for the application domain are not clearly stated,
understood, and applied.
 As a result, common patterns and templates are not exploited in

preparation for later reuse.
5. The code and upload development paradigm is becoming predominant in
emerging e-commerce applications.

As a result, the enterprise code base services only the short term
planning horizon where code rules and heroes flourish, but it mortgages

the future where traceable baseline requirements, specification, and
design artifacts are necessary foundations.

Defect Category and Severity
An earlier analysis was conducted on defect category and defect severity. The defect
severity metric revealed that 14.27% of all defects were major, and 85.73% minor. Defect
category distinguishes missing, wrong, and extra. For major defects, 7.44% were missing,
5.95% wrong, and .88% extra. For minor defects, 49.76% were missing, 27.63% wrong,
and 8.32% extra.

@Copyright Don O'Neill, 2003 32 NSQE

Defect Severity and Category Summary

Missing Wrong Extra Total

Major 7.44 5.95 .88 14.27

Minor 49.76 27.63 8.32 85.73

Total 57.20 33.60 9.20 100.00

Inspection Lab Operations
Through 2002 there have been 157 Inspection Labs in which 3,324 participants were
trained and conducted 3,040 inspection sessions. A total of 1,020,229 source lines of code
have received strict and close examination using the packaged procedures of the lab.
There have been 181,471 minutes of preparation effort and 71,283 minutes of conduct
time expended to detect 14,903 defects.

Of these 14,903 defects, 2,512 were classified as major and 12,391 as minor. A major
defect effects execution; a minor defect does not. It required 12.18 minutes of preparation
effort on the average to detect a defect. To detect a major defect required 72.24 minutes of
preparation effort on the average. On the average, 858.74 source lines of code were
examined each inspection conduct hour. There were 2.46 major defects detected in each
thousand lines, and 12.15 minor defects. There were 4.90 defects detected in inspecting
335.60 lines per session. The preparation effort was 0.64 of conduct effort. The Software
Inspection Labs produced a return on investment of 4.50.

 INSPECTION LAB OPERATIONS

Sessions Prep Conduct Major Minor Size in

Effort Time Defects Defects Lines

3,040 181,471 71,283 2,512 12,391
1,020,229

Metrics:
 1. 12.18 minutes of preparation effort per defect
 2. 72.24 minutes of preparation effort per major defect
 3. 2.46 major defects per thousand lines
 4. 12.15 minor defects per thousand lines
 5. 858.74 lines per conduct hour
 6. 4.90 defects per session
 7. 0.64 preparation/ conduct effort
 8. 335.60 lines per session
 9. 4.50 return on Investment

@Copyright Don O'Neill, 2003 33 NSQE

Defect Type Ranking
The foremost defect types that accounted for 91% of all defects detected are shown
below. Documentation, specifically lack of traceability, accounts for 40.51%of all defects.
Standards accounts for about 23.20%. Both of these are examples of organizational
neglect. These are followed by logic, functionality, syntax, data, and maintainability defect
types which are examples of programmer neglect.

 Documentation 40.51% error in guidance documentation
 Standards 23.20% error in compliance with product

standards
Logic 7.22% error revealed through informal

correctness questions
Functionality 6.57% error in stating or meeting intended

 Syntax 4.79% error in language defined syntax
compliance

 Data 4.62% error in data definition, initial value
setting, or use

Maintainability 4.09% error in good practice impacting the
supportability and evolution of the
software product

50.00

40.00

30.00

20.00

10.00

0.00

P
e
r
c
e
n
t

Percent of Defect Types

National Software Quality Experiment: 1992-2002

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

Defect Type Groups
Defect types can be organized for analysis as follows:

• Requirements
Documentation

• External
Interface, human factors, I/O

• Internal
Functionality, logic, data, performance

• Software practice
@Copyright Don O'Neill, 2003 34 NSQE

Syntax, standards, maintainability, other

50.00

40.00

30.00

20.00

10.00

0.00

P
e
r
c
e
n
t

Defect Type Group
Requirements External Internal Practice

Defect Type Group Distribution- 1992-2002

Percent

DEFECT RATES AND PRODUCT SIZE
An analysis was conducted on defect rates and product size. The rate of defects detected in
the Software Inspection Lab reveals an inverse relationship to product size. All programs
contain a beginning, an end, and a context for operation within the larger system. Starting,
finishing, and fitting in are all more error prone than the body of the program which gives it
size.

50.00

40.00

30.00

20.00

10.00

0.00
Major Defects Per KSLOC Minor Defects Per KSLOC

Defects and Size

Under 100

101-200

201-400

Over 400

1000
800
600
400
200

0

L
i
n
e
s

National Software Quality Experiment

Lines per Session

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

@Copyright Don O'Neill, 2003 35 NSQE

21
18
15
12
9
6
3
0

D
e
f
e
c
t
s
 National Software Quality Experiment

Major Defects Per Thousand Lines

40
30
20
10

0

D
e
f
e
c
t
s National Software Quailty Experiment

Minor Defects Per Thousand Lines

A Risk Management Application
The probability of occurrence of defect types has application in managing software risks on
the project. Here it is useful to make a careful distinction between sources of risk, risks, and
problems. A problem is a previous risk whose consequences are being played out.

The documentation defect type accounted for 40.51% of all defects. The lack of a
requirements traceability mechanism is a principal source of risk contributing to the
documentation defect type. Left unattended, this source of risk will continue at a high
probability of occurrence, and there will be problems in baseline and change management
and in ease of maintenance and adaptability.

The standards defect type accounted for 23.20% of all defects. The lack of a
programming style guide or the lack of enforcement of the style guide is a principal source
of risk contributing to the standards defect type. Left unattended, this source of risk will
continue at a moderately high probability of occurrence, and there will be problems in ease
of maintenance and adaptability.

The logic defect type accounted for 7.22% of all defects. The lack of rigor in applying
systematic design, structured programming, and disciplined data structures is a principal
source of risk contributing to the logic defect type. Left unattended, this source of risk will
continue at a moderate probability of occurrence, and there will be problems in reliability
and ease of maintenance and adaptability.

The functionality defect type accounted for 6.57% of all defects. The lack of shared
vision between producer and consumer and the lack of experience with the application
domain are the principal sources of risk contributing to the functionality defect type. Left
unattended, this source of risk will continue at a low probability of occurrence, and there will
be problems in end user satisfaction.

The data defect type accounted for 4.62% of all defects. The lack of experience with the
application domain, the use of disciplined data structures, and the hardware/software
platform are the principal sources of risk contributing to this defect type. Left unattended, this
source of risk will continue at a low probability of occurrence, and there will be problems in
reliability.

The syntax defect type accounted for 4.79% of all defects. The lack of experience with
the rules of syntax for recording the artifact and the fact that people make mistakes
sometimes are the principal sources of risk contributing to the syntax defect type. Left
unattended, this source of risk will lead to ambiguity and errors in logical expression,
@Copyright Don O'Neill, 2003 36 NSQE

problems in end user satisfaction, and problems in end user satisfaction and adaptability.

The maintainability defect type accounted for 4.09% of all defects. The extreme
emphasis on time to market and the widespread adoption of the code and ship/upload life
cycle has impacted the use of good software engineering practice impacting the
supportability and evolution of the software product. Left unattended, the occurrence of the
maintainability defect type will increase, and there will be problems in end user satisfaction
and the cost of maintenance.

The performance defect type accounted for 2.30% of all defects. The lack of experience
with the application domain and the hardware/software platform is a principal source of risk
contributing to the performance defect type. Left unattended, this source of risk which
applies to a small percentage of the code will continue at a low probability of occurrence,
and there will be problems in end user satisfaction as a result.

Questions Answered in the Lab
The micro-level national database on software product quality can be used to answer
important software engineering questions. When appropriately selected core samples are
accumulated in the Report Summary Form and the probability of occurrence is computed
for each defect type, defect severity, and defect category, these probabilities can be used
to construct answers to questions. Five of Boehm's top ten risks are answered below
using the 1992-2002 data from the experiment:

 To what extent were the wrong software functions being developed?
 Functionality errors accounted for 6.57% of all errors.
 To what extent were the wrong user interfaces developed?
 Interface errors accounted for 1.18% of all errors.
 Human Factors accounted for 1.98% of all errors.
 To what extent was there gold plating?
 9.20% of all errors were classified as extra.

To what extent was there a continuing stream of requirements changes?
 Documentation errors accounted for 40.51% of all errors.
 To what extent was there a shortfall in real time performance?

Performance errors accounted for 2.30% of all errors.

Questions Not Yet Answered
There is interest in defect leakage and ways to measure and reason about it. The Software
Inspection Lab includes a mechanism to collect data on defect leakage and to reason about
the results. This reasoning process crosses over into defect prevention... and fault and
failure prediction.

Defect leakage was introduced into the National Software Quality Experiment in 1995, and
the data on this is starting to build up. The defect leakage data needs to populate each
analysis bin in sufficient quantity before these results are usable. With this data it will be
possible to conduct special studies on defect leakage to augment the core analyses done
continuously.

Questions asked but not yet answered include:
1. To what extent is defect leakage occurring?
2. What is the frequency distribution of defect types that leak?
3. What is the frequency distribution of defect types for each life cycle activity?

@Copyright Don O'Neill, 2003 37 NSQE

The mechanism used to gather defect leakage involves identifying the life cycle activity for
each software inspection and the defect origin for each defect. Each software inspection is
considered an exit criteria for a software product engineering activity. Each defect is
characterized by category, severity, type, ... and defect origin. Defect origin is the software
product engineering activity where the defect was inserted. Where defect origin does not
match the software product engineering activity for which this inspection serves as an exit
criteria, defect leakage has occurred.

Separating signal from noise is a challenge in the analysis of defect leakage. As I rollout
software inspections in organizations, I know that the data collection mechanism is consistent
and well defined and that the data collection practice is reasonably consistent. The
inconsistency of the software product engineering activity is a source of noise. With the
software industry practice at a low level of software process maturity, noise dominates
signal. Learning more about measuring defect leakage and methods to reason about these
measurements are prerequisites to serious work in the estimation of defect leakage.

ANALYSIS OF RESULTS
As software inspections practice takes hold on the project, measured results accumulate
with each inspection session. Naturally the defects detected in each session are corrected
and defect leakage is reduced. More can be done with the project’s inspection
measurement data.

These measurements provide the means to achieve defect prevention. This is
accomplished by coordinating a monthly project analysis of these results. The project
manager convenes a meeting of staff members dedicated to the analysis of software
inspection results. This analysis spans both process and product measurements.

The process measurements and their derived metrics are assessed. The project
measurements taken are compared to the project history, the organization measurement,
and the industry average taken from the National Software Quality Experiment. Where the
project measurement is at substantial variance, the project team reasons about the cause
and the process changes it may suggest.

The product measurements are collected on the Inspection Summary Form which organizes
the frequency of defect types by category and severity. Each defect type is assessed,
and the following questions are asked:

1. Why does the defect type occur?
2. What management action can be taken?
3. What technical action can be taken?
4. What process change can be made?
5. Is the action worth taking?

At the conclusion of the session the project team recaps the actions worth taking. These
analysis results may be shared with senior management and made available to the
coordination infrastructure.

MEASUREMENT RESULTS BY ANALYSIS BINS
When organized into analysis bins, the information may suggest interesting trends. The
analysis bins are used to organize the findings into collections of data that reveal distinctions.
The types of bins selected are year, software process maturity, organization type, product
type, programming language, global region, and industry type. As data for each year is
@Copyright Don O'Neill, 2003 38 NSQE

collected, the overall results become more interesting, and the population of analysis bins
becomes more robust.

YEAR: 1992-2002
The thesis for the experiment was stated in 1992, the year the Department of Defense
made a commitment to reduce software problems by a factor of ten by the year 2000.
Accordingly, the experiment systematically tracks software inspection measurements and
metrics each year beginning with 1992.

The data collected in the Software Inspection Lab are well defined measurements. Ralph
Waldo Emerson observed, “The years teach us things the days never knew.” In fact this
adage holds true for the experiment.

SOFTWARE PROCESS MATURITY
The Software Engineering Institute’s Capability Maturity Model identifies five levels of
software process maturity. These levels motivate and guide an organization from
commitment management to the achievement of predictable results through measurement.
Accordingly, the experiment organizes the measurements and metrics by software process
maturity. The organizations participating in the experiment were assessed at level 1, level
2, and level 3 during their involvement .

ORGANIZATION TYPE
There is interest in the effect that organization type has on on a variety of software
engineering outcomes including quality. A useful distinction among organizations is to
separate Government, DOD Industry, and Commercial organizations. A Government
organization draws its performance team from the ranks of civil servants and military
personnel. A DOD Industry organization produces software under contract to the
Government or other DOD Industry organization. A commercial organization produces
software to support its business enterprise or to sell to consumers.

PRODUCT TYPE
There is interest in the effect that product type has on a variety of software engineering
outcomes including quality. Some software products are embedded in complex
hardware/software systems and may operate in real time. These tend to operate within tight
constraints and place a high premium on meeting schedule. Other software products are
organically entwined with the people and processes of the enterprise they serve. These
are produced by relatively small teams that possess a thorough understanding of how the
system contributes to the organization’s objectives.

• Embedded software might be found in the guidance system for a cruise missle or a
collision avoidance system on a railroad engine. This operates in real time and must be
safety critical. Consequently, embedded software is produced using disciplined
software engineering. These organizations may operate as SEI CMM level 4-5.

• Organic software might be found in a business supporting accounts receivable,
invoicing, and payments. This operates in quick time and must be trustworthy.
Consequently, organic software is produced using structured software engineering.
These organizations may operate as SEI CMM level 3.

• In my experience, eCommerce applications, which are driven by time to market
demands, are produced using ad hoc programming best described as code and
upload.

@Copyright Don O'Neill, 2003 39 NSQE

PROGRAMMING LANGUAGE
There is interest in the effect programming language selection has on a variety of software
engineering outcomes including quality. To construct programming language analysis bins
with sufficient samples and sample sources, it was necessary to group programming
languages into old style and modern. The old style bin includes Cobol, Fortran, CMS-2,
Jovial and assembly language. The modern bin includes Ada, C, C++, Java, HTML, Perl,
Mumps, SQL, and Visual Basic.

GLOBAL REGION
As global competitiveness moves to the forefront, understanding distinctions among global
regions is of interest. Analysis bins exist for North America, Latin America, and Asia Pacific.

INDUSTRY TYPE
As the usage of software increases, the number of industries dependent on software
increases. Essential industries which derive significant value from software include
telecommunications, transportation, financial, manufacturing, medical systems, utilities and
energy, defense, and e-commerce. Note: e-commerce results are reported in the industry
group of which they are a part.

SOFTWARE PRODUCT ENGINEERING MODE
Three modes of software product engineering practice are identified:
1. Ad hoc programming is characterized by a code and upload life cycle and a hacker

coding style. The result is spaghetti bowl coding lacking in order and consistency. This is
common in low software process maturity organizations especially those facing time to
market demands. Its practitioners are expected to experience high defect insertion and
low defect detection rates.

2. Structured software engineering employs structured programming, modular design, and
defined programming style and pays close attention to establishing and maintaining
traceability among requirements, specification, architecture, design, code, and test
artifacts. The result is well structured, consistently recorded components with organized
relationships among modules and traceability among life cycle artifacts.

3. Disciplined software engineering is more formal and might be patterned after Clean
Room software engineering [Prowell 99], Personal and Team Software Process
[Humphrey 97], and Extreme Programming techniques [Wells 01]. The result is well
specified, professionally engineered, expertly architected with source code
components organized and made understandable through templates for repeating
patterns whose completeness, correctness, style, and rules of construction can be
reasoned about with confidence.

@Copyright Don O'Neill, 2003 40 NSQE

250

200

150

100

50

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Major Defect

25

20

15

10

5

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Defect

20

16

12

8

4

0

D
e
f
e
c
t
s

National Software Quality Experiment

Major Defects Per Thousand Lines

40
30
20
10
0

D
e
f
e
c
t
s National Software Quailty Experiment

Minor Defects Per Thousand Lines

12

9

6

3

0

D
e
f
e
c
t
s

National Software Quality Experiment

Defects Per Session

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

800

600

400

200

0

L
i
n
e
s

National Software Quality Experiment

Lines per Session

2

1.5

1

0.5

0

P
r
e
p
/
C
o
n
d
u
c
t

National Software Quality Experiment

Preparation/ Conduct Effort

@Copyright Don O'Neill, 2003 41 NSQE

12

10

8

6

4

2

0

S
a
v
i
n
g
s
/
C
o
s
t

National Software Quality Experiment

Return On Investment

@Copyright Don O'Neill, 2003 42 NSQE

30

20

10

0

M
i
n
u
t
e
s National Software Quality Experiment

Preparation Effort Per Defect

200

150

100

50

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Major Defect

20

15

10

5

0

D
e
f
e
c
t
s
 National Software Quality Experiment

Major Defects Per Thousand Lines

40
30
20

10
0

D
e
f
e
c
t
s National Software Quailty Experiment

Minor Defects Per Thousand Lines

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

12

9

6

3

0

D
e
f
e
c
t
s

National Software Quality Experiment

Defects Per Session

1.5
1.25

1
0.75
0.5

0.25
0

P
r
e
p
/
C
o
n
d
u
c
t

National Software Quality Experiment

Preparation/ Conduct Effort

1000

750

500

250

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Session

9

6

3

0

S
a
v
i
n
g
s
/
C
o
s
t

National Software Quality Experiment

Return On Investment

50.00

40.00

30.00

20.00

10.00

0.00

P
e
r
c
e
n
t

Percent of Defect Types

Defect Types (Percent): 1992-1999

Interface

Data

Logic

I/O

Performance

Functionality

Human Factors

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 43 NSQE

National Software Quality Experiment Metrics:
All Participants by Time

30

20

10

0

M
i
n
u
t
e
s National Software Quality Experiment

Preparation Effort Per Defect

200

150

100

50

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Major Defect

21
18
15
12
9
6
3
0

D
e
f
e
c
t
s

National Software Quality Experiment

Major Defects Per Thousand Lines

40
30
20
10

0

D
e
f
e
c
t
s National Software Quailty Experiment

Minor Defects Per Thousand Lines

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

12

9

6

3

0

D
e
f
e
c
t
s

National Software Quality Experiment

Defects Per Session

1.5
1.25

1
0.75
0.5

0.25
0

P
r
e
p
/
C
o
n
d
u
c
t

National Software Quality Experiment

Preparation/ Conduct Effort

1000

800

600

400

200

0
National Software Quality Experiment

Lines per Session

10

8

6

4

2

0

S
a
v
i
n
g
s
/
C
o
s
t

National Software Quality Experiment

Return On Investment

50.00

40.00

30.00

20.00

10.00

0.00

P
e
r
c
e
n
t

Percent of Defect Types

Defect Types (Percent): 1992-1999

Interface

Data

Logic

I/O

Performance

Functionality

Human Factors

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 44 NSQE

National Software Quality Experiment Metrics:
All Participants

Sorted

30

20

10

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Defect

200

150

100

50

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Major Defect

20
16
12

8
4
0

D
e
f
e
c
t
s

National Software Quality Experiment

Major Defects Per Thousand Lines

@Copyright Don O'Neill, 2003 45 NSQE

40

30

20

10

0

D
e
f
e
c
t
s

National Software Quailty Experiment

Minor Defects Per Thousand Lines

12

9

6

3

0

D
e
f
e
c
t
s

National Software Quality Experiment

Defects Per Session

1.5

1.25

1

0.75

0.5

0.25

0

P
r
e
p
/
C
o
n
d
u
c
t

National Software Quality Experiment

Preparation/ Conduct Effort

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

@Copyright Don O'Neill, 2003 46 NSQE

10

8

6

4

2

0

S
a
v
i
n
g
s
/
C
o
s
t

National Software Quality Experiment

Return On Investment

@Copyright Don O'Neill, 2003 47 NSQE

National Software Quality Experiment Metrics:
Annual Results

15.00

10.00

5.00

0.00
Year

Preparation Effort Per Defect

1988-1991
1992

1993

1994

1995

1996

1997

1998
1999

120.00

100.00

80.00

60.00

40.00

20.00

0.00
Year

Preparation Effort Per Major Defect

1988-1991

1992

1993
1994

1995

1996

1997

1998

1999

5.00

4.00

3.00

2.00

1.00

0.00
Year

Major Defects Per Thousand Lines

1988-1991

1992

1993

1994

1995

1996

1997

1998

1999

24.00

18.00

12.00

6.00

0.00
Year

Minor Defects Per Thousand Lines

1988-1991

1992
1993

1994

1995
1996

1997
1998

1999

1500.00

1200.00

900.00

600.00

300.00

0.00
Year

Lines Per Conduct Hour

1988-1991

1992

1993

1994
1995

1996

1997

1998

1999

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00
Year

Defects Per Session

1988-1991

1992
1993

1994

1995
1996

1997
1998

1999

1.00

0.80

0.60

0.40

0.20

0.00
Year

Preparation/Conduct Effort

1988-1991
1992

1993

1994

1995
1996

1997

1998

1999

500.00

400.00

300.00

200.00

100.00

0.00
Year

Lines Per Session

1988-1991

1992
1993

1994
1995

1996
1997

1998

1999

6.00

5.00

4.00

3.00

2.00

1.00

0.00
Year

Return on Investment

1988-1991

1992

1993

1994

1995

1996

1997

1998

1999

60.00

50.00

40.00

30.00

20.00

10.00

0.00
1992 1993 1994 1995 1996 1997 1998 1999

Percent of Defect Types

Interface

Data
Logic

I/O

Performance

Functionality
Human Resources

Standards

Documentation
Syntax

Test Environment

Test Coverage
Maintainability

Other

@Copyright Don O'Neill, 2003 48 NSQE

National Software Quality Experiment Metrics:
Software Process Maturity

16.00
12.00

8.00
4.00
0.00

Process Maturity Level

Preparation Effort Per Defect

Level 1

Level 2

Level 3

80.00
60.00
40.00
20.00
0.00

Process Maturity Level

Preparation Effort Per Major Defect

Level 1

Level 2

Level 3

6.00

4.00
2.00

0.00
Process Maturity Level

Major Defects Per Thousand Lines

Level 1

Level 2

Level 3

30.00

20.00

10.00

0.00
Process Maturity Level

Minor Defects Per Thousand Lines

Level 1

Level 2

Level 3

1200.00
900.00
600.00
300.00

0.00
Process Maturity Level

Lines Per Conduct Hour

Level 1

Level 2

Level 3

6.00
4.00
2.00
0.00

Process Maturity Level

Defects Per Session

Level 1

Level 2

Level 3

1.00

0.75

0.50

0.25

0.00
Process Maturity Level

Preparation/Conduct Effort

Level 1

Level 2

Level 3

400.00

300.00

200.00

100.00

0.00
Process Maturity Level

Lines Per Session

Level 1

Level 2

Level 3

6.00

4.00

2.00

0.00
Process Maturity Level

Return on Investment

Level 1

Level 2

Level 3

50.00

40.00

30.00

20.00

10.00

0.00
Level 1 Level 2 Level 3

Percent of Defect Types

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 49 NSQE

Analysis of Annual Averages
The 1992 hypothesis being investigated in the National Software Quality Experiment is
whether software problems are being reduced by a factor of ten by the year 2000. An
analysis of annual averages suggests that a moderately stable process is in operation, and
that there is little pressure to reestablish performance at an improved level of practice.

Prep/Defect- The average prep/defect has operated in a stable manner in the early years
with less predictability in the later years. A lower prep/defect may suggest:
1. There may be more inserted defects to find.
2. Practitioners may be getting better at detecting defects.

21

14

7

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Defect

Figure 6a Preparation Per Defect by Year

Prep/Maj- The average prep/maj has operated in a stable manner almost throughout the
period. A lower prep/defect may suggest:
1. Practitioners may be getting better at detecting defects... especially major defects.
2. Practitioners may be inserting more defects.

150

100

50

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Maj

Figure 6b Preparation Per Major Defect by Year

Maj/Thousand- The average maj/thousand has operated in a moderately unstable
manner throughout the time period.
1. This metric is sensitive to the distinction between new development code and legacy
code.
2. This metric is sensitive to the defect insertion rate. Therefore, a high average
maj/thousand may simply indicate the presence of a large number of defects.
@Copyright Don O'Neill, 2003 50 NSQE

3. This metric is sensitive to software product engineering mode which influences both
detect insertion and detect detection rate.

6

4

2

0

National DSoftware Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Maj/KSLOC

Figure 6c Major Defects Per Thousand Lines by Year

Min/Thousand- The average min/thousand has operated in a moderately unstable
manner throughout the time period.
1. Practitioners seem to detect a steady volume of minor defects.
2. This metric is sensitive to the distinction between new development code and legacy
code.
3. This metric is sensitive to the defect insertion rate. Therefore, a high average
min/thousand may simply indicate the presence of a large number of defects.
4. This metric is sensitive to software product engineering mode which influences both
detect insertion and detect detection rate.

30

20

10

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Min/KSLOC

Figure 6d Minor Defects Per Thousand Lines by Year

Size/Conduct Hour- Average size/conduct hour has operated in a moderately stable
manner throughout most of the time period.
1. This metric is sensitive to the distinctions between new development code and legacy
code.
2. This metric is sensitive to the preparation effort prior to the session. Higher preparation
effort may yield higher size/conduct hour.

@Copyright Don O'Neill, 2003 51 NSQE

1600

1200

800

400

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Size /Conduct

Figure 6e Size Per Conduct Hour by Year

Defects/Session- Average defects /session operated in a moderately stable manner
throughout most of the time period.
1. Practitioners seem to detect a steady number of defects per session.
2. This metric is sensitive to the preparation effort prior to the session. Higher preparation
effort may yield higher defects/session.

8

6

4

2

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Defect/Session

Figure 6f Defects Per Session by Year

Prep/Conduct- Average prep/conduct has consistently trended downward over the time
period.
1. Practitioners increasingly are experiencing excessive overtime and even off the clock
time and neglect preparation effort for software inspections.
2. Where average prep/conduct approaches equilibrium (1.0), defect leakage may be
reduced.

1.2

0.9

0.6

0.3

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Conduct

Figure 6g Preparation Per Conduct Effort by Year
@Copyright Don O'Neill, 2003 52 NSQE

Size/Session- Size/session has operated in a moderately stable manner throughout the
time period.
1. One way to look harder for defects is to reduce size/session.
2. This metric is sensitive to the distinctions between new development code and legacy
code.
3. This metric is sensitive to the preparation effort prior to the session.

600.00

450.00

300.00

150.00

0.00

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Size/Session

Figure 6h Size Per Session by Year

Savings/Cost (ROI)- Average savings/cost has operated in a marginally stable manner
throughout the time period.
1. Return on investment fuels management commitment to the software process.
2. High defect detection results in high return on investment.

4.6

4.4

4.2

4

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

ROI

Figure 6i Return on Investment by Year

Reasoning About Findings: Software Process Maturity
The level 1 major and minor defects per thousand lines are less than half of level 2 and level
3. Are level 1 organizations inserting less defects ... or simply finding less?

6.00

4.00

2.00

0.00
Process Maturity Level

Major Defects Per Thousand Lines

Level 1

Level 2

Level 3

30.00

20.00

10.00

0.00
Process Maturity Level

Minor Defects Per Thousand Lines

Level 1

Level 2

Level 3

Level 1 lines per conduct hour and lines per session are double level 2 and level 3. One
way to look harder for defects is to inspect smaller artifacts. Level 2 and level 3
@Copyright Don O'Neill, 2003 53 NSQE

organizations are looking harder... and finding more.

1200.00
900.00
600.00
300.00

0.00
Process Maturity Level

Lines Per Conduct Hour

Level 1

Level 2

Level 3

400.00

300.00

200.00

100.00

0.00
Process Maturity Level

Lines Per Session

Level 1

Level 2

Level 3

Level 2 preparation/conduct effort approaches 1.0 which is the desired equilibrium. Another
way to look harder for defects is to increase preparation time. Level 1 and level 3 show a
large shortfall in preparation... suggesting that more defects could be detected.

1.00

0.75

0.50

0.25

0.00
Process Maturity Level

Preparation/Conduct Effort

Level 1

Level 2

Level 3

Level 1, 2, 3 defects per session and return on investment is consistently repeatable.

6.00
4.00
2.00
0.00

Process Maturity Level

Defects Per Session

Level 1

Level 2

Level 3

6.00

4.00

2.00

0.00
Process Maturity Level

Return on Investment

Level 1

Level 2

Level 3

@Copyright Don O'Neill, 2003 54 NSQE

Reasoning About Findings: Organization Type
DOD Industry seems to find more defects. Interestingly DOD Industry detects substantially
more minor defects. While minor defects do not effect execution, their detection and
correction is beneficial for maintenance.

4.00

3.00
2.00

1.00

0.00
Organization Type

Major Defects Per Thousand Lines

Commercial

DOD Industry
Government

20.00
15.00
10.00

5.00
0.00

Organization Type

Minor Defects Per Thousand Lines

Commercial

DOD Industry

Government

Again DOD Industry stands out because it is inspection smaller artifacts. One way to look
harder for defects is to inspect smaller artifacts.

1200.00

800.00

400.00
0.00

Organization Type

Lines Per Conduct Hour

Commercial
DOD Industry

Government

400.00

300.00

200.00

100.00

0.00
Organization Type

Lines Per Session

Commercial

DOD Industry

Government

The Government preparation/conduct effort approaches 1.0 which is the desired
equilibrium. Another way to look harder for defects is to increase preparation time.

1.00

0.75

0.50

0.25

0.00
Organization Type

Preparation/Conduct Effort

Commercial

DODIndustry

Government

The DOD Industry return on investment lags others because its preparation per major
defect is higher, and major defects strongly influence return on investment. Recall that DOD
Industry looked harder by inspecting smaller artifacts.

100.00
75.00
50.00
25.00
0.00

Organization Type

Preparation Effort Per Major Defect

Commercial

DOD Industry
Government

5.00
4.00
3.00
2.00
1.00
0.00

Organization Type

Return on Investment

Commercial

DOD Industry

Government

The defects per session and defect type distributions are consistently repeatable.

6.00

4.00

2.00

0.00
Organization Type

Defects Per Session

Commercial

DOD Industry

Government

50.00

40.00

30.00

20.00

10.00

0.00
Commercial DOD Industry Government

Percent of Defect Types

Interface
Data

Logic
I/O
Performance

Functionality
Human Resources

Standards
Documentation

Syntax
Test Environment
Test Coverage

Maintainability
Other

@Copyright Don O'Neill, 2003 55 NSQE

Reasoning About Findings: Product Type
Embedded systems defect detection are more than twice of organic systems.

5.00
4.00
3.00
2.00
1.00
0.00

Product Type

Major Defects Per Thousand Lines

Embedded

Organic

20.00

10.00

0.00
Product Type

Minor Defects Per Thousand Lines

Embedded

Organic

Embedded systems is inspecting smaller artifacts. One way to look harder is to inspect
smaller artifacts.

1500.00
1200.00
900.00
600.00
300.00

0.00
Product Type

Lines Per Conduct Hour

Embedded

Organic

500.00
400.00
300.00
200.00
100.00

0.00
Product Type

Lines Per Session

Embedded

Organic

Embedded systems are slightly higher than organic systems in defects per session and
preparation/conduct effort.

6.00
4.00
2.00
0.00

Product Type

Defects Per Session

Embedded

Organic

1.00

0.75

0.50

0.25

0.00
Product Type

Preparation/Conduct Effort

Embedded

Organic

The return on investment and defect type distributions are consistently repeatable.

6.00

4.00

2.00

0.00
Product Type

Return on Investment

Embedded

Organic

50.00

40.00

30.00

20.00

10.00

0.00
Embedded Organic

Percent of Defect Types

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 56 NSQE

National Software Quality Experiment Metrics:
Product Type

15.00
10.00

5.00
0.00

Organization Type

Preparation Effort Per Defect

Commercial

DOD Industry

Government

100.00
80.00
60.00
40.00
20.00
0.00

Organization Type

Preparation Effort Per Major Defect

Commercial

DOD Industry

Government

4.00
3.00

2.00

1.00

0.00
Organization Type

Major Defects Per Thousand Lines

Commercial

DOD Industry

Government

20.00
15.00

10.00
5.00

0.00
Organization Type

Minor Defects Per Thousand Lines

Commercial

DOD Industry

Government

1200.00

800.00

400.00

0.00
Organization Type

Lines Per Conduct Hour

Commercial

DOD Industry

Government

6.00

4.00

2.00

0.00
Organization Type

Defects Per Session

Commercial

DOD Industry

Government

1.00

0.75

0.50

0.25

0.00
Organization Type

Preparation/Conduct Effort

Commercial

DODIndustry

Government

400.00
300.00
200.00
100.00

0.00
Organization Type

Lines Per Session

Commercial

DOD Industry
Government

5.00
4.00
3.00
2.00
1.00
0.00

Organization Type

Return on Investment

Commercial
DOD Industry

Government

50.00

40.00

30.00

20.00

10.00

0.00
Commercial DOD Industry Government

Percent of Defect Types

Interface
Data

Logic
I/O

Performance
Functionality

Human Resources
Standards

Documentation
Syntax

Test Environment
Test Coverage

Maintainability
Other

@Copyright Don O'Neill, 2003 57 NSQE

National Software Quality Experiment Metrics:
Organization Type

15.00
10.00
5.00
0.00

Product Type

Preparation Effort Per Defect

Embedded

Organic

80.00
60.00
40.00
20.00
0.00

Product Type

Preparation Effort Per Major Defect

Embedded

Organic

5.00
4.00
3.00
2.00
1.00
0.00

Product Type

Major Defects Per Thousand Lines

Embedded

Organic

20.00

10.00

0.00
Product Type

Minor Defects Per Thousand Lines

Embedded

Organic

1500.00
1200.00

900.00
600.00
300.00

0.00
Product Type

Lines Per Conduct Hour

Embedded
Organic 6.00

4.00
2.00
0.00

Product Type

Defects Per Session

Embedded

Organic

1.00

0.75

0.50

0.25

0.00
Product Type

Preparation/Conduct Effort

Embedded

Organic
500.00
400.00
300.00
200.00
100.00

0.00
Product Type

Lines Per Session

Embedded

Organic

6.00

4.00

2.00

0.00
Product Type

Return on Investment

Embedded

Organic

50.00

40.00

30.00

20.00

10.00

0.00
Embedded Organic

Percent of Defect Types

Interface

Data

Logic

I/O
Performance

Functionality

Human Resources

Standards
Documentation

Syntax

Test Environment
Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 58 NSQE

National Software Quality Experiment Metrics:
Programming Language

15.00
10.00

5.00
0.00

Programming Language

Preparation Effort Per Defect

Modern

Old Style

100.00

75.00

50.00

25.00

0.00
Programming Language

Preparation Effort Per Major Defect

Modern

Old Style

4.00
3.00
2.00
1.00
0.00

Programming Language

Major Defects Per Thousand Lines

Modern

Old Style

20.00

10.00

0.00
Programming Language

Minor Defects Per Thousand Lines

Modern

Old Style

1200.00

600.00

0.00
Programming Language

Lines Per Conduct Hour

Modern

Old Style

6.00

4.00

2.00

0.00
Programming Language

Defects Per Session

Modern

Old Style

1.00

0.75

0.50

0.25

0.00
Programming Language

Preparation/Conduct Effort

Modern

Old Style
400.00

300.00

200.00

100.00

0.00
Programming Language

Lines Per Session

Modern
Old Style

5.00
4.00
3.00
2.00
1.00
0.00

Programming Language

Return on Investment

Modern

Old Style

50.00

40.00

30.00

20.00

10.00

0.00
Modern Old Style

Percent of Defect Types

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 59 NSQE

National Software Quality Experiment Metrics:
Geographic Region

15.00
12.00

9.00
6.00
3.00
0.00

Continent

Preparation Effort Per Defect

Asia Pacific

North America

Latin America

100.00
75.00
50.00
25.00

0.00
Continent

Preparation Effort Per Major Defect

Asia Pacific

North America

Latin America

5.00
4.00
3.00
2.00
1.00
0.00

Continent

Major Defects Per Thousand Lines

Asia Pacific

North America

Latin America

40.00

30.00

20.00

10.00

0.00
Continent

Minor Defects Per Thousand Lines

Asia Pacific

North America

Latin America

1000.00

750.00

500.00

250.00

0.00
Continent

Lines Per Conduct Hour

Asia Pacific

North America

Latin America

6.00
5.00
4.00
3.00
2.00
1.00
0.00

Continent

Defects Per Session

Asia Pacific

North America
Latin America

1.00

0.75

0.50

0.25

0.00
Continent

Preparation/Conduct Effort

Asia Pacific

North America

Latin America

400.00

300.00

200.00

100.00

0.00
Continent

Lines Per Session

Asia Pacific

North America

Latin America

5.00

4.00
3.00

2.00

1.00
0.00

Continent

Return on Investment

Asia Pacific

North America

Latin America

60.00

50.00

40.00

30.00

20.00

10.00

0.00
Asia Pacific North America Latin America

Percent of Defect Types

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 60 NSQE

National Software Quality Experiment Metrics: Industry Type

15.00

10.00

5.00

0.00

Preparation Effort Per Defect

Defense
Financial

Manufacturing

Medical

Telecommunications

Transportation

150.00

100.00

50.00

0.00

Preparation Effort Per Major Defect

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

5.00

4.00

3.00

2.00

1.00

0.00

Major Defects Per Thousand Lines

Defense

Financial

Manufacturing

Medical
Telecommunications

Transportation

20.00

10.00

0.00

Minor Defects Per Thousand Lines

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

1500.00

1000.00

500.00

0.00

Lines Per Conduct Hour

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

8.00

6.00

4.00

2.00

0.00

Defects Per Session

Defense

Financial

Manufacturing
Medical

Telecommunications

Transportation

1.00

0.75

0.50

0.25

0.00

Preparation/Conduct Effort

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

800.00

600.00

400.00

200.00

0.00

Lines Per Session

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

6.00
5.00
4.00
3.00
2.00
1.00
0.00

Return on Investment

Defense

Financial

Manufacturing
Medical

Telecommunications

Transportation

60.00

50.00

40.00

30.00

20.00

10.00

0.00
Defense Financial Manufact Medical Telecom Transport

Percent of Defect Types

Interface

Data

Logic
I/O

Performance

Functionality

Human Resources
Standards

Documentation

Syntax

Test Environment
Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 61 NSQE

Defects Per Session Metric
The increase in defects per session is accompanied by a steadily increasing return on
investment, an increasing defect density in both major and minor defects per thousand lines
of source code, and an increasing preparation/conduct effort ratio.

12
9
6
3
0

D
e
f
e
c
t
s National Software Quality Experiment

Defects Per Session

8

6

4

2

0
Return on Investment

Defects Per Session

2-3

3-4
4-5

5-6

6-7
7-8

0ver 8

36
32
28
24
20
16
12
8
4
0

Major/ KSLOC Minor/ KSLOC

Defects Per Session

2-3

3-4

4-5

5-6

6-7

7-8
0ver 8

1

0.75

0.5

0.25

0
Preparation/Conduct Effort

Defects Per Session

2-3

3-4

4-5

5-6

6-7

7-8

0ver 8

Lines Per Conduct Hour Metric
The increase in lines per hour is accompanied by a steadily increasing lines per session and
a decreasing defect density in both major and minor defects per thousand lines of source
code.

2000
1500
1000

500
0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

1000
800
600
400
200

0

L
i
n
e
s

National Software Quality Experiment

Lines per Session

21
18
15
12
9
6
3
0

D
e
f
e
c
t
s

National Software Quality Experiment

Major Defects Per Thousand Lines

40

30

20

10

0

D
e
f
e
c
t
s

National Software Quailty Experiment

Minor Defects Per Thousand Lines

@Copyright Don O'Neill, 2003 62 NSQE

Defect Type Groups
In addition to control panels, the NSQE Repository contains defect type distributions
containing the frequency of occurrence of each defect type. These defect types can be
organized for analysis as follows:

• Requirements
Documentation

• External
Interface, human factors, I/O

• Internal
Functionality, logic, data, performance

• Software practice
Syntax, standards, maintainability, other

50

40

30

20

10

0
Participants

Defect Type Groups

Requirements
External

Practice

Internal

60

50

40

30

20

10

0
Requirements External Practice Internal

Defect Type Groups

1992

1993

1994

1995

1996

1997

1998

1999

50

40

30

20

10

0
Requirements External Practice Internal

Defect Type Groups

Level 1

Level 2

Level 3

50

40

30

20

10

0
Requirements External Practice Internal

Defect Type Groups

Commercial

DOD Industry

Government

50

40

30

20

10

0
Requirements External Practice Internal

Defect Type Groups

Embedded

Organic

50

40

30

20

10

0
RequirementsExternal Practice Internal

Defect Type Groups

Modern

Old Style

60
50
40
30
20
10

0
RequirementsExternal Practice Internal

Defect Type Groups

Asia Pacific

North America

Latin America

60
50
40
30
20
10
0

Requirements External Practice Internal

Defect Type Groups

Defense

Financial

Manufacturing

Medical

Telecommunications

Transportation

@Copyright Don O'Neill, 2003 63 NSQE

Derivation of Process Metrics: Control Panels
Metrics derived from these measurements are used in assessing the effectiveness and
efficiency of the Software Inspections Process. It is useful to analyze the distribution of each
derived metric. The following statistics are computed:
B i n P r e p / P r e p / M a j o r / M i n o r / L i n e s / D e f e c t s P r e p / ROI

D e f e c t M a j o r K S L O C K S L O C Conduc t P e r Conduc t
D e f e c t H o u r S e s s i o n

Average 12.18 72.24 2.46 12.15 858.7 4.90 0.64 4.50
Max 63.64 700 52 168 3060 20 2.13 15.31
Min 2.73 12.5 0.20 0.76 0 1.75 0.125 1.11
STDEV 7.93 115.2 6.74 21.63 573.9 2.81 0.327 2.48
LCL(20%) 7.96 39 1.08 8.07 292.7 3.35 0.433 2.85
Median(50%) 12.82 79.83 2.87 16.79 624.5 4.471 0.571 3.98
UCL(80%) 16.13 152 7.00 30.72 1046.8 6.745 0.821 6.67

A graphic view of the sorted observations provides a quick look analysis of the distribution.
These are shown below. It is clear that the observations on the extremes are less useful in
predicting and setting expectation. Consequently control panels are derived by selecting
the twentieth percentile, fiftieth percentile, and eightieth percentile. With these values the
following control panels result.

25

20

15

10

5

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Defect

250

200

150

100

50

0

M
i
n
u
t
e
s

National Software Quality Experiment

Preparation Effort Per Major Defect

16

12

8

4

0

D
e
f
e
c
t
s

National Software Quality Experiment

Major Defects Per Thousand Lines

50
40
30
20

10
0

D
e
f
e
c
t
s

National Software Quailty Experiment

Minor Defects Per Thousand Lines

@Copyright Don O'Neill, 2003 64 NSQE

2000

1500

1000

500

0

L
i
n
e
s

National Software Quality Experiment

Lines Per Conduct Hour

12

9

6

3

0

D
e
f
e
c
t
s

National Software Quality Experiment

Defects Per Session

2

1.5

1

0.5

0

P
r
e
p
/
C
o
n
d
u
c
t

National Software Quality Experiment

Preparation/ Conduct Effort

800

600

400

200

0

L
i
n
e
s

National Software Quality Experiment

Lines per Session

12

10

8

6

4

2

0

S
a
v
i
n
g
s
/
C
o
s
t

National Software Quality Experiment

Return On Investment

50.00

40.00

30.00

20.00

10.00

0.00

P
e
r
c
e
n
t

Percent of Defect Types

National Software Quality Experiment: 1992-2002

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 65 NSQE

DERIVATION OF PROCESS METRICS: CONTROL PANELS

Defect Density GaugeDefect Density Gauge

1
3

7

Major Defects Per
Thousand Lines

Inspection Conduct Rate Gauge

Lines Per Conduct Hour

293
625

1047

Defect Detection Rate Gauge

Minutes of Preparation Effort
Per Defect

8
13

16

Defect Detection Rate Gauge

Defects Per Session

3.3
4.5

6.7

.43
 .57

.82

Inspection Conduct Rate Gauge

Preparation/Conduct

Minor Defects Per
Thousand Lines

8
17

31

Defect Detection Rate Gauge

Minutes of Preparation Effort
Per Major Defect

39
80

152

Return on Investment Gauge

Net Savings/ Detection Cost

2.8
4.0

6.7

@Copyright Don O'Neill, 2003 66 NSQE

Quality and Product Metrics
Software Inspections practice yields useful measurements easy to obtain. Thesae
measurements can then be used to derive quality and product metrics.

Measurements taken include preparation effort, conduct time, number of participants, size of
artifact, major defects, and minor defects. Useful quality metrics derived from these
measurements include size per session and preparation effort/conduct effort ratio where
conduct effort is conduct time times number of participants. Useful product metrics derived
from these measurements include major defects per size and minor defects per size.

@Copyright Don O'Neill, 2003 67 NSQE

Return on Investment
Managers are interested in knowing the return on investment to be derived from software
process improvement actions. The National Software Quality Experiment gathers the data
needed to determine this for the Software Inspections Process.

12

10

8

6

4

2

0
National Software Quality Experiment

Return on Investment

Participants

The return on investment for software inspections is defined as net savings divided by
detection cost, where net savings is cost avoidance less cost to repair now and detection
cost is the cost of preparation effort and the cost of conduct effort. Savings result from early
detection and correction avoiding the increased cost multiplier associated with detection and
correction of defects later in the life cycle.

An undetected major defect that escapes detection and leaks to the next phase of the life
cycle may cost two to ten times to detect and correct. A minor defect may cost two to four
times to detect and correct. The net savings then may be up to nine times for major defects
and up to three times for minor defects. The defined measurements collected in the
Software Inspections Lab may be combined in complex ways to form this derived metric.
A full discussion of these complexities can be found in “Return on Investment Using
Software Inspections” at http://members.aol.com/ONeillDon/roi-essay.html. For those with
software inspections results from their organization, the online calculator found at
http://members.aol.com/ONeillDon/nsqe-roi.html can be used to compute return on
investment.

@Copyright Don O'Neill, 2003 68 NSQE

DD- Development Detection
DL- Development Leakage

TD- Test Detection
TL- Test Leakage

Defect Leakage Model

Development

DD

DL Test
TD

Customer UseTL

Computing ROI
ROI: Net Savings/Detection Cost

Reasoning About Net Savings
Net Savings: Cost Avoidance-Cost to Repair Now

Net Savings:
• Major Defects * {(M1 * DD)+(M1 * DD) * (M2 * TL)*C1-C1}+Minor Defects * (M3-

C2)

Where:
• M1: (2-10) Additional Cost to Repair Multiplier for Development to Test Major

Defect Leakage
• M2: (2-10) Additional Cost to Repair Multiplier for Test Customer Use Major

Defect Leakage
• M3: (2-4) Additional Cost to Repair for Minor Defect Leakage
• DD: (.5-.95) Defect Detection Rate for Development to Test
• TL: (.05-.5) Test Leakage Rate for Test to Customer Use
• C1: Average Cost to Repair Major Defect
• C2: Average Cost to Repair Minor Defect

Reasoning About Detection Cost
Detection Cost:

• Preparation Effort + Conduct Effort

Detection Cost:
• {Minutes of Preparation Effort + (Minutes of Conduct Time * P)}/60

Where:
• P: (4-6) Number of participants
• 60 minutes per hour

ANALYSIS OF ANNUAL AVERAGES
The 1992 hypothesis being investigated in the National Software Quality Experiment is
whether software problems are being reduced by a factor of ten by the year 2000. An
analysis of annual averages and ranges suggests that a moderately stable process is in

@Copyright Don O'Neill, 2003 69 NSQE

operation, and that there is little pressure to reestablish the control limits at an improved
level of practice.

Analysis of Annual Averages
Metric In Out
Prep/Defect 7 5
Prep/Major 11 1
Major/KSLOC 8 4
Minor/KSLOC 8 4
Size/Conduct 10 2
Defect/Session 9 3
Prep/Conduct 9 3
Size/Session 9 2
ROI 10 2
Total 81 27

Averages
An analysis of the averages by year throughout the time period for the metrics under study
suggest that these metrics are moderately stability [SPC 92]. With 12 years and 9 metrics
there are 108 data points. Eighty-one (81) fall within one standard deviation of the average
and 27 outside these limits. A discussion of each average metric follows.

Prep/Defect- The average prep/defect has operated in a stable manner in the early years
with less predictability in the later years. A lower prep/defect may suggest:
1. There may be more inserted defects to find.
2. Practitioners may be getting better at detecting defects.

20

16

12

8

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Defect

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Prep/Maj- The average prep/maj has operated in a stable manner almost throughout the
period. A lower prep/defect may suggest:
1. Practitioners may be getting better at detecting defects... especially major defects.
2. Practitioners may be inserting more defects.

150
125

100
75

50
25

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Maj

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Maj/Thousand- The average maj/thousand operated in a moderately unstable manner
throughout the time period.
1. This metric is sensitive to the distinction between new development code and legacy
code.
2. This metric is sensitive to the defect insertion rate. Therefore, a high average
maj/thousand may simply indicate the presence of a large number of defects.
3. This metric is sensitive to software product engineering mode which influences both
@Copyright Don O'Neill, 2003 70 NSQE

detect insertion and detect detection rate. Therefore, a high average maj/thousand may
indicate a high defect detection rate and the presence of a low number of defects.

5

4

3

2

1

0

National DSoftware Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Maj/KSLOC

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Min/Thousand- Average min/thousand has operated in a moderately stable manner for
four consecutive data points preceded by a special cause data point.
1. Practitioners seem to detect a steady volume of minor defects.
2. This metric is sensitive to the distinction between new development code and legacy
code.
3. This metric is sensitive to the defect insertion rate. Therefore, a high average
maj/thousand may simply indicate the presence of a large number of defects.
4. This metric is sensitive to software product engineering mode which influences both
detect insertion and detect detection rate. Therefore, a high average maj/thousand may
indicate a high defect detection rate and the presence of a low number of defects.

30

20

10

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Min/KSLOC

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Size/Conduct Hour- Average size/conduct hour operated in a moderately stable manner.
1. This metric is sensitive to the distinctions between new development code and legacy
code.
2. This metric is sensitive to the preparation effort prior to the session. Higher preparation
effort may yield higher size/conduct hour.

1600

1200

800

400

0

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Size /Conduct

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Defects/Session- Average defects /session operated in a moderately stable manner
throughout the time period.
1. Practitioners seem to detect a steady number of defects per session.
2. This metric is sensitive to the preparation effort prior to the session. Higher preparation
effort may yield higher defects/session.

@Copyright Don O'Neill, 2003 71 NSQE

8

6

4

2

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Defect/Session

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Prep/Conduct- Average prep/conduct has consistently trended downward over the time
period.
1. Practitioners increasingly are experiencing excessive overtime and even off the clock
time and neglect preparation effort for software inspections.
2. Where average prep/conduct approaches equilibrium (1.0), defect leakage may be
reduced.

1.2

0.9

0.6

0.3

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Prep/Conduct

UCL(AVE+STDEV)
LCL(AVE-STDEV)

Size/Session- Size/session operated in a moderately stable manner throughout the time
period.
1. One way to look harder for defects is to reduce size/session.
2. This metric is sensitive to the distinctions between new development code and legacy
code.
3. This metric is sensitive to the preparation effort prior to the session. Higher preparation
effort may yield higher size/conduct hour.

600.00

450.00

300.00

150.00

0.00

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

Size/Session

UCL(AVE+STDEV)

LCL(AVE-STDEV)

Savings/Cost (ROI)- Average savings/cost has operated in a marginally stable manner
throughout the time period.
1. Return on investment fuels management commitment to the software process.
2. High defect detection results in high return on investment.

@Copyright Don O'Neill, 2003 72 NSQE

4.6
4.5
4.4
4.3
4.2
4.1

National Software Quality Experiment
1988-911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year By Year

ROI

UCL(AVE+STDEV)

LCL(AVE-STDEV)

@Copyright Don O'Neill, 2003 73 NSQE

Reasoning About Findings: Software Process Maturity
The level 1 major and minor defects per thousand lines are less than half of level 2 and level
3. Are level 1 organizations inserting less defects ... or simply finding less?

6.00

4.00

2.00

0.00
Process Maturity Level

Major Defects Per Thousand Lines

Level 1

Level 2

Level 3

30.00

20.00

10.00

0.00
Process Maturity Level

Minor Defects Per Thousand Lines

Level 1

Level 2

Level 3

Level 1 lines per conduct hour and lines per session are double level 2 and level 3. One
way to look harder for defects is to inspect smaller artifacts. Level 2 and level 3
organizations are looking harder... and finding more.

400.00

300.00

200.00

100.00

0.00
Process Maturity Level

Lines Per Session

Level 1

Level 2

Level 3

1200.00

900.00

600.00

300.00

0.00
Process Maturity Level

Lines Per Conduct Hour

Level 1

Level 2

Level 3

Level 2 preparation/conduct effort approaches 1.0 which is the desired equilibrium. Another
way to look harder for defects is to increase preparation time. Level 1 and level 3 show a
large shortfall in preparation... suggesting that more defects could be detected.

1.00

0.75

0.50

0.25

0.00
Process Maturity Level

Preparation/Conduct Effort

Level 1

Level 2

Level 3

Level 1, 2, 3 defects per session and return on investment are consistently repeatable.

6.00
4.00
2.00
0.00

Process Maturity Level

Defects Per Session

Level 1

Level 2

Level 3

6.00

4.00

2.00

0.00
Process Maturity Level

Return on Investment

Level 1

Level 2

Level 3

Level 1, 2, 3 defect type distributions are consistently repeatable.

50.00

40.00

30.00

20.00

10.00

0.00
Level 1 Level 2 Level 3

Percent of Defect Types

Interface
Data

Logic

I/O

Performance

Functionality

Human Resources

Standards
Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 74 NSQE

Reasoning About Findings: Organization Type
DOD Industry seems to find more defects. Interestingly DOD Industry detects substantially
more minor defects. While minor defects do not effect execution, their detection and
correction is beneficial for maintenance.

4.00

3.00
2.00

1.00

0.00
Organization Type

Major Defects Per Thousand Lines

Commercial

DOD Industry
Government

20.00
15.00
10.00

5.00
0.00

Organization Type

Minor Defects Per Thousand Lines

Commercial

DOD Industry

Government

Again DOD Industry stands out because it is inspecting smaller artifacts. One way to look
harder for defects is to inspect smaller artifacts.

400.00

300.00

200.00

100.00

0.00
Organization Type

Lines Per Session

Commercial

DOD Industry

Government

1200.00

800.00

400.00
0.00

Organization Type

Lines Per Conduct Hour

Commercial
DOD Industry

Government

The Government preparation/conduct effort approaches 1.0 which is the desired
equilibrium. Another way to look harder for defects is to increase preparation time.

1.00

0.75

0.50

0.25

0.00
Organization Type

Preparation/Conduct Effort

Commercial

DODIndustry

Government

The DOD Industry return on investment lags others because its preparation per major
defect is higher, and major defects strongly influence return on investment. Recall that DOD
Industry looked harder by inspecting smaller artifacts.

5.00
4.00
3.00
2.00
1.00
0.00

Organization Type

Return on Investment

Commercial

DOD Industry

Government

100.00
75.00
50.00
25.00
0.00

Organization Type

Preparation Effort Per Major Defect

Commercial

DOD Industry
Government

The defects per session and defect type distributions are consistently repeatable.

6.00

4.00

2.00

0.00
Organization Type

Defects Per Session

Commercial

DOD Industry

Government

50.00

40.00

30.00

20.00

10.00

0.00
Commercial DOD Industry Government

Percent of Defect Types

Interface

Data
Logic

I/O
Performance

Functionality
Human Resources

Standards
Documentation

Syntax
Test Environment

Test Coverage
Maintainability

Other

@Copyright Don O'Neill, 2003 75 NSQE

Reasoning About Findings: Product Type
Embedded systems defect detection aismore than twice that of organic systems.

5.00
4.00
3.00
2.00
1.00
0.00

Product Type

Major Defects Per Thousand Lines

Embedded

Organic

20.00

10.00

0.00
Product Type

Minor Defects Per Thousand Lines

Embedded

Organic

Embedded systems are inspecting smaller artifacts. One way to look harder is to inspect
smaller artifacts.

500.00
400.00
300.00
200.00
100.00

0.00
Product Type

Lines Per Session

Embedded

Organic

1500.00
1200.00
900.00
600.00
300.00

0.00
Product Type

Lines Per Conduct Hour

Embedded

Organic

Embedded systems are slightly higher than organic systems in defects per session and
preparation/conduct effort.

6.00
4.00
2.00
0.00

Product Type

Defects Per Session

Embedded

Organic

1.00

0.75

0.50

0.25

0.00
Product Type

Preparation/Conduct Effort

Embedded

Organic

The return on investment and defect type distributions are consistently repeatable.

6.00

4.00

2.00

0.00
Product Type

Return on Investment

Embedded

Organic

50.00

40.00

30.00

20.00

10.00

0.00
Embedded Organic

Percent of Defect Types

Interface

Data

Logic

I/O

Performance

Functionality

Human Resources

Standards

Documentation

Syntax

Test Environment

Test Coverage

Maintainability

Other

@Copyright Don O'Neill, 2003 76 NSQE

Special Study on Personal Software Process
The National Software Quality Experiment (NSQE) collects core samples of software
product quality in the Software Inspection lab. Disciplined software engineering is the most
formal practice of software product engineering and might be patterned after Clean Room
software engineering, Personal and Team Software Process, and Extreme Programming
techniques. As the National Software Quality Experiment (NSQE) operation expands to
capture software inspection measurements from organizations of all kinds, it is becoming a
resource to answer important software engineering questions.

While PSP is expected to enable level 4 and 5 capability, it is also expected to deliver
measurably superior performance and products. But how does the practice of Personal
Software Process compare to organizational performance at SEI CMM process maturity
levels 1, 2, and 3?

National Software Quality Experiment
The National Software Quality Experiment (NSQE) collects core samples of software
product quality in the Software Inspection lab. These core samples are assigned to analysis
bins including year, software process maturity level, product type, organization type,
programming language, global region, and industry type. Dozens of organizations have
supplied thousands of core samples to this national database. The NSQE supplies the
initial measurements and metrics needed by an organization to set its expectations for
minutes of preparation effort per defect, defects per thousand lines of code, lines inspected
per conduct hour and session, defects per session, preparation/conduct effort, and return on
investment.

Disciplined Software Engineering
Disciplined software engineering is the most formal practice of software product engineering
and might be patterned after Clean Room software engineering, Personal and Team
Software Process, and Extreme Programming techniques. The result is expected to be
well specified, professionally engineered, expertly architected with source code
components organized and made understandable through templates for repeating patterns
whose completeness, correctness, style, and rules of construction can be reasoned about
with confidence. For many, this is the expectation for an SEI CMM level 4 and 5
organization. It is expected to experience low defect insertion and high defect detection
rates. Without question, the focus of disciplined software engineering practitioners is on
eliminating every possible defect even if defect detection costs exceed net savings and
the return on investment falls below the break even point. For this group, every practitioner
is riveted on achieving perfection.

Special Study Basis
As the National Software Quality Experiment (NSQE) operation expands to capture
software inspection measurements from organizations of all kinds, it is becoming a resource
to answer important software engineering questions. For example, NSQE is beginning to
experience data collection from the practice of Personal Software Process (PSP). While the
NSQE analysis bin of PSP results is thin containing only 86 inspection sessions, the
comparison of results by Software Engineering Institute (SEI) Capability Maturity Model
(CMM) level may be of interest.

Special Study Results
In conducting the special study, the NSQE metrics collected from PSP practitioners are

@Copyright Don O'Neill, 2003 77 NSQE

gathered and matched with the NSQE metrics results collected from level 1, level 2, and
level 3 participants. The PSP/ level ratios for NSQE metrics are derived for each level 1-3.
An analysis of the variances for the ratios of each metric and each level indicates a total
variance for level 1 of 40.53, for level 2 of 25.20, and for level 3 of 26.05. A review of
each individual metric shows that the least variance occurred once for level 1, three times for
level 2, and five times for level 3. Therefore, the small sample of PSP results collected so
far indicates that PSP performance most closely matches that of level 3 practitioners.

While there is a minimum variance between PSP and level 3 results and many of the
NSQE metrics are closely comparable, three specific metrics standout in contrasting PSP to
level 3 results:
1. Preparation effort per major defect is 195%

[126.13 PSP versus 64.81 level 3]
2. Major defects per thousand lines of code is 62%

[2.33 PSP versus 3.78 level 3]
3. Minor defects per thousand lines of code is 136% [22.22

PSP versus 16.34 level 3]

PSP and Level 3 Comparison
NSQE Metric PSP Level 3 %
minutes of preparation effort per defect 11.95 12.18 98
minutes of preparation effort per major defect 126.13 64.81 195
major defects per thousand lines of code 2.33 3.78 62
minor defects per thousand lines of code 22.22 16.34 136
lines inspected per conduct hour 460 520 88
defects per session 4.66 4.72 99
preparation/conduct effort .56 .53 105
lines per session 189 234 81
return on investment 3.18 4.28 74

TSP Quality Guidelines
In addition, it is interesting to note that the lines of code per conduct hour suggested in the
Team Software Process (TSP) Quality Guidelines is less than 200 lines compared to the
PSP usage in NSQE measured at 460 lines. It should be noted that the lines of code per
session for NSQE PSP is 189.

Conclusion
While PSP is expected to enable level 4 and 5 capability, it is also expected to deliver
measurably superior performance and products. While this study is based on a thin sample
of NSQE PSP results, these results do not indicate a convincingly superior performance
associated with PSP practice.

Bibliography
1. O’Neill, Don, “National Software Quality Experiment: A Lesson in Measurement 1992-

2000”, http://members.aol.com/ONeillDon/nsqe-results.html
2. “Personal Software Process”, CMU/SEI-2000-TR-022
3. “Team Software Process”, CMU/SEI-2000-TR-023
4. Paulk, Mark C., “The Capability Maturity Model: Guidelines for Improving the Software

Process”, Addison-Wesley Publishing Company, 1995
@Copyright Don O'Neill, 2003 78 NSQE

Metric PSP Level 1 Percent
Level 1 Net
Prep Effort /Defect 11.95 11.543855816 103.51827145
3.51827145
Prep Effort/Major 126.13 70.503002001 178.90018357

78.9001835
Major/KSLOC 2.33 1.9664096822 118.49005937
18.4900593
Minor/KSLOC 22.22 10.043250518 221.24311207
121.243112
Lines/Conduct Hour 460 1023.8210145 44.929728293
55.0702717
Defects/Session 4.66 4.7312661499 98.493719279
1.50628072
Prep/Conduct Effort 0.56 0.59141782692 94.687710533
5.31228946
ROI 3.18 4.4617061678 71.273182957
28.7268170
Lines/Session 189 393.95503876 47.975017808
52.0249821
Average 40.5324741

Metric PSP Level 2 Percent
Level 2 Net
Prep Effort /Defect 11.95 14.220472441 84.033776301
15.9662236
Prep Effort/Major 126.13 80.094420601 157.47663702

57.4766370
Major/KSLOC 2.33 4.4273851825 52.627
47.373
Minor/KSLOC 22.22 20.509117627 108.34205744
8.34205744
Lines/Conduct Hour 460 549.05581638 83.780188876
16.2198111
Defects/Session 4.66 5.2076719577 89.483362967
10.5166370
Prep/Conduct Effort 0.56 0.81125021735 69.029257314
30.9707426
ROI 3.18 4.5739931839 69.523496694
30.4765033
Lines/Session 189 208.83730159 90.501073593
9.49892640
Average 25.2045043

Metric PSP Level 3 Percent
Level 3 Net
Prep Effort /Defect 11.95 12.183465459 98.083751627
1.91624837
Prep Effort/Major 126.13 64.807228916 194.62335007

@Copyright Don O'Neill, 2003 79 NSQE

CRITICAL DEFECT PREDICTION
Critical Defect, Fault, and Failure Prediction
If critical software defects, faults, and failures can be predicted, perhaps they can be
detected, controlled, and prevented. If this could become standard software practice, the
software industry could replace chaos and unpredictability with trustworthy software
systems that earn public confidence. The goal is to be the recognized leader in trusted
software systems practice.

There is insufficient defect, fault, and failure data available from the nation’s factory floor.
There is insufficient process, method, and tooling to combine defect data obtained through
software inspections practice, software fault data obtained through software product test
and use, and software failure data obtained through software system operation into
predictions of trustworthy software system operation.

Defect Fault

Failure

Trustworthy software systems are dependable in operation from a user perspective.
Trustworthy software systems are convincingly reliable from an engineering perspective.
Engineers assess and predict the reliability of a system in terms of fault analysis, mean time
to failure, availability, and mean time to repair. Managers report on the emerging quality of
the software system in terms of completeness, correctness, conformance to requirements,
compliance with standards, adherence to rules of construction for the application domain, and
various viewpoints.

The trustworthiness of software systems threatens the harmonious operation of critical
industries and is impacting public confidence in the orderliness of society and its institutions
both public and private. Bridging the gap of prediction practice among defects, faults, and
failures remains an unsolved problem.

• Defects are detected early using software inspections as exit criteria for activities in the
software life cycle. A defect is an instance where the software artifact does not meet the
standard of excellence set as the exit criteria for the activity.

• Faults are detected later through exercise during integration and system test. A fault is
an instance where the exercise of a software component yields an incorrect result.

• Failures are detected in operational test and operational deployment. A failure is a user
visible instance where the operation of a software system does not meet expectation.

Critical Defect Prediction Model
Critical Defect, Fault, and Failure Prediction project is based on the integration of three
models. Critical components are pinpointed through a Survivability Assessment of the
concept of operations, software architecture, and the rules construction for its components.
The National Software Quality Experiment (NSQE) with its Software Inspection Lab and its
Repository of core samples uses defect detection to derive metrics capable of calibrating
defect leakage prediction and defect leakage type distribution.The question then is, “To
what extent are Software Engineering Error Prediction Models capable of utilizing defect
@Copyright Don O'Neill, 2003 80 NSQE

leakage prediction and defect leakage type distribution to predict faults and failures?” The
answer lies in the integration of models.

Survivability
Assessment

NSQE and
Repository

Software
Engineering Error

Prediction

Actual Faults

Actual Failures

Predicted Failures

Predicted Faults

Mapping
Characterization

Disseminating the knowledge, skills, and behaviors for predicting defects, faults,and failures
among the industry practitioners on the factory floor is accomplished by push and pull.
Several initiatives generate pull including SEI CMM, 6-sigma,and ISO 9001, and the
growing number of lawsuits stemming from software failure.Push is generated through
distribution of an error prediction kit composed of data base structures, data repository,
spreadsheet templates, and user handbook; licensing the use of certain data; reporting to
user groups and industry conferences. Once a community of interest has been assembled,
the diffusion strategy can best be operated from an open web site on the internet following
the new rules of the new economy.

@Copyright Don O'Neill, 2003 81 NSQE

Project Plan

Entry
• Sites visits

• Critical value points

• At risk components

• NSQE and
repository

• Software
Engineering Error
Predictive Models

Exit
• Mapping

characterizations

• Defect data

• Fault data

• Failure data

Tasks
• Survivability

Assessment
• Conduct NSQE
• Model Exercise
• Calibration
• Packaging
• Dissemination
• Web-based Diffusion

Verification
• Calibrate
• Assess
• Reconcile

Prediction Goal, Question, Metric
The goal, question, metric (GQM) template introduced by Dr. Vic Basili can be used to
focus the approach:

• The goal is to utilize defect data from the NSQE and the Software Inspection Lab to
predict critical faults and failures and to calibrate Software Engineering Error Prediction
Models.

• Several questions are asked. What are the critical software components? What is the
defect type distribution of faults and failures? What is the defect leakage from design
and code into test operations and from test to field operations?

• The metrics generated by the NSQE include both Software Inspection Lab Operations
control panels and defect type distributions.

The NSQE Repository contains thousands of core samples from which control panels of
upper and lower limits are derived. The control panel metrics are based on personnel
effort, software component size, and defects detected and include:

• Minutes of preparation effort per major defect
• Minutes of preparation effort per defect
• Minutes of preparation effort per major defect
• Major defects per thousand line of code
• Minor defects per thousand line of code
• New development lines per conduct hour
• Legacy lines per conduct hour
• Defects per session
• Preparation effort / conduct effort
• Lines per session
• Return on investment

@Copyright Don O'Neill, 2003 82 NSQE

Spreadsheet Road Map
Spreadsheet road map and expressions:
 A Title analysis bin name
 B Prep Effort minutes of effort reported
 C Conduct Time minutes of wall clock time
 D Major Defects defects affecting execution
 E Minor Defects defects not affecting execution
 F Lines of Code non-blank lines in artifact being inspected
 G Pages of Doc pages in artifact being inspected
 H Sessions number of inspections

Spread Sheet Expressions
Prep/Defect "=B/(D+E)"
Prep/Major "=B/D"
Major/Size "=D/(F/1000)"
Minor/Size "=E/(F/1000)"
Size/Conduct Hour "=F/(C/60)"
Defects/Session "=(D+E)/H"
Prep/Conduct “=B/(C*4)”
Lines /Session "=F/H"
Return on Investment “=((D*9)+E)/((B+(C*4))/60)”

Software inspections practice detects 60-90% of defects inserted. Occasionally this drops
below 50%; infrequently it exceeds 95%. A defect detection range of 60-90% is defect
leakage range of 40-10%. If the nominal defect detection is 75%; the nominal defect
leakage would be 25%. These control panel metrics reveal the effectiveness of the
software inspections practice and the expectation for detection and leakage.

Fault Detection Detection Scale
Prep/Maj "=((Prep/(Major)-81))/(152-47)"
Prep/Defect "=((Prep/(Maj+Min))-13)/(16-9)"
Maj/KSLOC "=(Maj/(Size/1000)-3)/(6-1)"
Min/KSLOC "=(Min/(Size/1000)-18)/(31-9)"
Size/Conduct "=-((Size/(Conduct/60)-602)/(1115-292))"
Defects /Session "=((Maj+Min)/Sessions-4.7)/(6.6-3.5)"
Prep/Conduct "=(Prep/(Conduct*4)-.58)/(.84-.44)"
Lines/Session "=((F/H")-255)/(420-125)
ROI "=(((Maj*9)+Min)/((Prep+(Conduct*4))/60)-3.9)/(6.4-2.8)"
Average “= SUM(Detection Scale Values)”
Prediction
Predicted Major Leakage "=(Maj/(Size/1000)*(1-(0.6+0.3*(Average))))"

Predicted Minor Leakage "=(Min/(Size/1000)*(1-(0.6+0.3*(Average))))"

@Copyright Don O'Neill, 2003 83 NSQE

CONCLUSION
CLOSING OBSERVATIONS
The hypothesis of the National Software Quality Experiment set in 1992 is that software
problems will be reduced by a factor of ten by the year 2001. The 1992-2002 data
collected through the mechanism of the National Software Quality Experiment and its
Software Inspection Lab strongly suggest that the hypothesis is not proved.

• Has the stated objective to reduce software problems been achieved? The short
answer to the question is that the objective has not been met. The most compelling
evidence is found in the 'Year' data under NSQE Results by Analysis Bin. The metrics
data for each year meander in a limited control range, showing no signs of breaking out.

• Both the process metrics and the defect type percents are somewhat stable. To
achieve a factor of ten reduction over the time period, there would need to be a
breakout, a significant breakout. In the absence of a breakout, it is asserted that the
improvement goal was not met.

• When software inspections data for an organization is collected, it generally falls into the
patterns revealed by the NSQE once there are a few dozen software inspections. For
example, if an organization is characterized as a level 2, defense industry sector, and
embedded software type, the NSQE data with just those characteristics are selected as
the benchmark.

10.00

8.00

6.00

4.00

2.00

0.00

D
e
f
e
c
t
s

1988-19911992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

National Software Quality Experiment Results by Year

Major Defects Per KSLOC X10 Objective

In closing it needs to be restated that the data does not suggest progress towards the Year
2000 goal to reduce software problems by a factor of ten. Hunting for defects in software is
a target rich opportunity. The harder the project looks for errors, the more it finds. The way
to look harder is to reduce the volume of product inspected in each session and to increase
preparation effort. In doing this, there continues to be a favorable return on investment for
software inspections; savings exceed costs by 4 to 1.

The data suggests that increased software process maturity results in increased defect
detection, with the expected result of lower defect leakage in the field. At level 1 the
project lacks a shared vision for a standard of excellence for software engineering products.
At level 2 attention is paid to establishing a standard of expectation, a standard of
excellence, and so more defects are identified. At level 3 the standard is set and the well
defined, fined grained processes for software product engineering are in place and in
@Copyright Don O'Neill, 2003 84 NSQE

practice with software inspections operating as the exit criteria for each activity of the life
cycle. Many commercial enterprises possess a large volume of legacy software and find
themselves anchored at level 1.

The data also suggests that defect density decreases with increasing program size... up to
a point. All programs contain a beginning, an end, and a context for operation within the
larger system. Starting, finishing, and fitting in are all more error prone than the body of the
program which gives it size.

In addition the data suggests that the organization's neglect of its software process
exceeds the poor workmanship of individual programmers as the source of errors.
Documentation and standards defect types account for nearly two-thirds of all defects, and
these are the responsibility of the organization and its process.

Software products are not well connected to the requirements or business case that
inspired their creation. Much of the documentation type defect detection results from the
lack of traceability from the code to the design to the specification to the requirements.

Perhaps the Government should consider commercial practices. In addition, DOD Industry
may be limited by the Government acquisition management practices it must adhere to.
Consumers of embedded software products hold producers to higher standards than
producers of organic software products hold themselves.

SPONSORING THE NATIONAL EXPERIMENT
In order to meet the objective to reduce software problem rates by a factor of ten by the
year 2000, there must be steady improvement year by year. The 1992-2002 defect
profiles collected in the National Software Quality Experiment provide the benchmark
measurements to track progress towards the objective. In order to sustain the experiment,
organizations must participate and sponsor this activity. Three steps are needed to
sponsor the National Software Quality Experiment in an organization:

1. Senior management publicly communicates a buy-in for the experiment and
its benefits and advocates its use in the organization and beyond.

2. Program managers install the Software Inspections Process, authorize
training for project personnel, and initiate the practice of fact-based software
management.

3. Software Inspection Lab results are disseminated among practitioners,
program managers, and senior management.

The results of the Inspection Lab provide the energy to install the process and to improve
software products. Software inspections are viewed as competency enhancing by
practitioners, and there is little resistance once senior management makes a public
commitment to sponsor the change. Despite this, only 22% of the organizations
conducting the SEI's Software Process Assessment (SPA) are credited with practicing
peer reviews [Kitson 92].

An effective technology transition strategy for installing the software inspections process is
to first prototype the Inspection Lab and collect results. The participant feedback from the
prototype sessions usually rates the willingness and ability to conduct inspections on the
project at 4.0 to 4.4 on a 5.0 scale. The actual inspection results from the lab are fed back
@Copyright Don O'Neill, 2003 85 NSQE

to practitioners, project management, and senior management. These results and
discussions about them with senior management provide the proper environment to obtain
senior management commitment, sponsorship, and funding for training conduct and
student labor. The planning of production training may involve a make-buy decision on the
training mechanism depending on the number of students and the organization approach to
in-house training.

The software inspections training needed by the organization includes training for
practitioners, orientation for project managers, and briefing for senior management. For
practitioners the training must span the behavior, skills, and knowledge needed to carry out
the defined roles in the Software Inspections Process. For project managers, the
orientation should overview what the practitioners are taught along with specific
responsibilities associated with using inspection results to reduce defect leakage. The senior
management presentation should highlight the oversight opportunities associated with
defect prevention.

Once the organization is trained, the monitoring of software inspection results at the monthly
program review can begin. This should focus on the effectiveness of defect detection and
correction activities and the efficiency of the process. In addition the oversight of
organization inspection results at the senior management quarterly review should focus on
patterns of neglect, defect prevention, and the selection of improvement opportunities.
The results being communicated to management should also be fed back to practitioners
on a regularly scheduled periodic basis. In addition, reporting Inspection Lab results to the
National Software Quality Experiment results in feedback from the national database
useful in obtaining an industrial calibration of the organization's software product quality.

FIELD MEASUREMENT LESSONS
In conducting the National Software Quality Experiment, valuable lessons in field
measurement are being learned. These lessons are forming the prescription for obtaining
lasting value in measurement:

1. Measurement must be aligned with business and performance needs. These activities
must be built into the normal operation of the organization.

• To do this, the goals to be met and questions to be answered in management,
engineering, and operations must precede the collection of data.

2. Metrics must be carefully pinpointed and rigorously defined. Extraordinary steps must
be applied to obtain consistency and uniformity.

• Without a well defined process for data collection and analysis, the variance in the
measurement process itself impacts the accuracy of results.

3. Attention must be paid to the confidentiality of results. The opportunity for improvement
is increased when the measured results are made more widely available.

• However, individuals and groups naturally resist having their shortcomings made public.
If ignored, this resistance will defeat the measurement program.

• The organization must strike a balance between public and private data.

NEXT STEPS
The National Software Quality Experiment is a demonstrated mechanism for collecting
uniform and consistent measurements of software product quality. It provides the vantage
point for software product quality and the field experience in measurement needed to jump
start the practice of fact-based software management.

As the centerpiece of the experiment, the Software Inspection Labs have been installed

@Copyright Don O'Neill, 2003 86 NSQE

in software factories around the country. The National Software Quality Experiment
collects, organizes, and packages core samples of software product quality. These
measurements are increasing the understanding of the state of the practice and how to
measure it. Based on these results and the identification of common problems,
organizations are challenged to:

1. Establish a tradition of baseline management with fine-grained traceability
among requirements, specification, design, code, and test artifacts
 2. Establish a tradition of modern software engineering design and coding
practices
 3. Establish a tradition of uniform recording style and its enforcement
 4. Establish a tradition of visible evolution of modern domain architectures and

product lines
The organization that wishes to calibrate its software inspection results with the National
Software Quality Experiment is invited to conduct an NSQE assessment at:
http://members.aol.com/ONeillDon/nsqe-assessment.html

The usefulness and success of the National Software Quality Experiment depends on
sustaining a continuous stream of core samples. Organizations from industry, government
and military, and commercial enterprise are invited to participate and enrich this national
database resource.

The prediction of critical faults and failures using the core samples of defect data from the
National Software Quality Experiment remains a future challenge now underway.

Fast Forward
In closing, it must be said that the future may be different than we expect. The DOD
Technology Strategy focused on inward looking goals set in an earlier time:
1. Improving productivity by a factor of two
2. Reducing software problems by a factor ten

As software development is becoming better understood, there is a growing recognition
and acceptance that fielding software systems involves a process of experimentation with
hypotheses, alternatives, measurements, analysis, and iteration. These systems are less
deterministic in requirements, capabilities, and features and
more non-deterministic in execution paths, platforms, and scalability.

Commercial organizations today focus on the outward looking goals needed to achieve
global competitiveness. These organizations are focused on controlling personnel
resources, managing customer relationships, innovating new products and features, and
managing the risk of event threats.

Future Directions
In reasoning about future trends of Peer Reviews, the topics considered include increasing
rate of software problems, improving the practice of defect prevention and prediction,
extending the practice of Peer Reviews to systems engineering, understanding the
process of experimentation in software development, exploiting technology in automating
the Peer Reviews, and adapting to changes in business environment.

Software problem rates are not decreasing. The results of the National Software Quality
Experiment 2000 show no systematic improvement towards fulfilling the national goal of a
@Copyright Don O'Neill, 2003 87 NSQE

ten times reduction in software problems set in 1992. The defect rates continue to range
from 1 to 10 defects per thousand lines of source code.

The factors that may be contributing to defect rates include:
• The emphasis on quicker, better, and cheaper
• The trend towards code and upload practice as the life cycle model
• The preoccupation on improving software process maturity and mastering the

management track practices of the Software Engineering Institute’s Capability Maturity
Model for Software level 2, an obstacle to many

• The downsizing of middle management and senior technical staff known to hold the line
on product quality.

While software inspections have been in use for over twenty-five years, defect prevention
remains an immature practice. Defect prevention is a CMM level 5 key process area, and
some organizations have achieved level 5. As more organizations seek to adopt the
practice of defect prevention, its benefits and methods may become more well
understood stimulating others to adopt the practice.

Similarly, defect prediction remains an underdeveloped practice. If software defects, faults,
and failures can be predicted, perhaps they can be detected, controlled, and prevented.
Model based techniques calibrated with defect detection early in the life cycle to predict
defect rates in later life cycle activities have been demonstrated [Gaffney 97]. More modest
efforts utilizing software inspections data to estimate the number of defects remaining to be
found in testing are being applied on the project [Harding 98]. However, there is insufficient
defect, fault, and failure data available from the nation’s factory floor [O’Neill 99]. In addition
there is insufficient process, method, and tooling to combine defect data obtained through
software inspections practice, software fault data obtained through software product test
and use, and software failure data obtained through software system operation into
predictions of trustworthy software system operation [Wallace 97].

While the benefits and usage of software inspections on code artifacts is well known, there
is increasing interest in extending software inspections to all phases of the life cycle including
requirements, specifications, design, code, and test artifacts. The CMMI project with the
inclusion of Peer Reviews in the Product Verification process area extends Peer Reviews
to both systems engineering and software artifacts.

To achieve the best possible practice of software inspections, both managers and technical
practitioners are encouraged to decriminalize defects. People make mistakes sometimes,
yet software must be bit perfect. When managers and technical participants view with
alarm the defects detected in software inspections, it produces a negative impact. On the
other hand, when managers genuinely decriminalize defects and use their detection as a
means to prevent their recurrence, it produces a positive result. During a software inspection
session, the litmus test for decriminalization lies in the reaction of participants when a major
defect is detected. Does the group say ‘good catch’ or ‘bummer’?

With the growing recognition that fielding software involves a process of experimentation
and with the increasing pressures of competition and demand for innovation, software
walkthroughs may experience increasing usage. Software walkthroughs encourage and
support the learning essential to experimentation. In favoring the group interaction needed
to achieve consensus, software walkthroughs may contribute to increased innovation in
software products.

@Copyright Don O'Neill, 2003 88 NSQE

There is interest in automating software inspections. The value of programming languages
with strong typing, robust compilers, static analyzers and traceability tools, and complexity
metrics [McCabe 94] is recognized. However, software inspections is a reasoning activity
and will remain essentially a human activity. The use of information technology innovations to
support the logistics of preparation, scheduling, conduct, and results repository operations
are sources for improved industry practice.

Software inspections are being conducted effectively using groupware tools. However,
where global software development teams conducting geographically dispersed
inspection sessions are using ‘follow the sun’ software development tactics, software
inspection participants may be separated by both geography and time zones complicating
the logistics of their application [Carmel 99].

Software inspections usage is increasing in e-commerce applications where code and
upload is the typical life cycle practice. In an environment of rapid change and frequent
releases, there is an absence of robust testing and sometimes even regression testing.

@Copyright Don O'Neill, 2003 89 NSQE

BIBLIOGRAPHY
[AHDEL 76] "The American Heritage Dictionary of the English Language",
Houghton Company, 1976

[Basili 96] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F.,
Sorumgard, S., Zelkowitz, M.V., “The Empirical Investigation of Perspective-Based
Reading”; Empirical Software Engineering: An International Journal, Vol. 1, No. 2, 1996

[Basili/Boehm 01] Basili, Vic, Barry Boehm, “Top Ten Defect Reduction List”,
IEEE Software, January 2001

[Basili 02] Basili, V.R., Caldiera, G., and Rombach, H.D., “The Experience
Factory” Encyclopedia of Software Engineering. John Wiley & Sons, Inc., Volume 2, pp.
929-945, 2002

[Business Week 99] "Software Hell: Is There a Way Out?", Business Week,
pp.104-118, 6 December 1999

[DOD STS 91] Department of Defense Software Technology Strategy, draft
prepared for the Director of Defense Research and Engineering [DDR&E], December
1991

[Ebenau 94] Ebenau, Robert G. and Susan H. Strauss, "Software Inspection
Process", McGraw-Hill, Inc., 1994, pp.236-240

[Fagan 76] Fagan, M., "Design and Code Inspections to Reduce Errors in
Program Development", IBM Systems Journal, 15, 3, 1976, pp.182-211

[Fagan 87] Fagan, M., "Advances in Software Inspections", IEEE Transactions on
Software Engineering, 12, 7, 1987

[Florac 92] Florac, William B., "Software Quality Measurement: A Framework for
Counting Problems and Defects", CMU/SEI-92-TR-22, September 1992

[Freedman 90] Freedman, D.P., G.M. Weinberg, "Handbook of Walkthroughs,
Inspections, and Technical Reviews", Dorset House Publishing Co., Inc., 1990, pp. 89-
161

[Gaffney 97] Gaffney, John E., “Software Defect Estimation, Prediction, and the
CMM”, Metrics ‘97 Conference, 1997

[GCN 99] Olsen, Florence, "Is It Possible to Build Software Free Defects",
Government Computing News, 8 March 1999

[Gilb 93] Gilb, Tom and Dorothy Graham, “Software Inspection”, Addison
Wesley Longman Limited, 1993, pp. 40-136

[Humphrey 89] Humphrey, Watts S., "Managing the Software Process", Addison-
Wesley Publishing Company, Inc., 1989, pp, 171-190, 463-486

[IBM 99] “Orthogonal Defect Classification”, IBM Research, Center for Software
Engineering, http://www.research.ibm.com/softeng/ODC, 1999
@Copyright Don O'Neill, 2003 90 NSQE

[Joyce 89] Joyce, Edward J., "Is Error-Free Software Achievable?", Datamation,
15 February 1989

[Juristo 98] Juristo, Natalia, "An Adaptation of Experimental Design to Empirical
Validation of Software Engineering Theories", Twenty -Third Annual Software Engineering
Workshop, Greenbelt, Maryland, 2-3 December 1998

[Kitson 92] Kitson, David H. and Stephen M. Masters, "An Analysis of SEI
Software Process Assessment Results: 1987-1991", 15th ICSE

[Linger 79] Linger, R.C., H.D. Mills, B.I. Witt, "Structured Programming: Theory
and Practice", Addison-Wesley Publishing Company, Inc., 1979, pp. 147-212

[Linger 98] Linger, Richard C., “Survivability Assessment”, SEI Symposium,
Pittsburgh, 1998

[Lindner 91] Lindner, Richard J., "Software Development at a Baldrige Winner,
IBM Rochester", TQM for Software Conference, sponsored by The National Institute for
Software Quality and Productivity, November 1991

[NIST 99] Wallace, Dolores, “Error, Fault, and Failure Data Collection and
Analysis”, NIST Information Technology Laboratory (ITL), hissant.ncsl.nist.gov/eff, 1999

[Nolan 96] Nolan, Thomas W. and Lloyd P. Provost, "Understanding Variation",
IEEE Engineering Management Review, pp. 65-74, Spring 1996

[O'Neill 88] O'Neill, Don and Albert L. Ingram, "Software Inspections Tutorial",
Software Engineering Institute Technical Review 1988, pp. 92-120

[O'Neill 89] O'Neill, Don, "Software Inspections Course and Lab", Training
Offering for Practitioners, Software Engineering Institute, 1989

[O'Neill 92] O'Neill, Don, "Software Inspections: More Than a Hunt for Errors",
Cross Talk, Issue 30, January 1992

[O'Neill 94] O'Neill, Don, "National Software Quality Experiment", International
Conference on Software Quality, Washington DC, 1994

[O'Neill 95a] O'Neill, Don, "Software Inspections Management Workshop", Training
Offering for Managers, 1995

[O'Neill 95b] O'Neill, Don, "Software Inspections Process: Executive
Presentation", Training Offering for Executives, 1995

[O'Neill 95,96] O'Neill, Don, "National Software Quality Experiment: Results
1992-1995", Software Technology Conference, Salt lake City, 1995 and 1996

[O'Neill 96] O’Neill, Don, “Peer Reviews Key Process Area Handbook”,
Don O'Neill Consulting, Gaithersburg, Maryland, 1996

[O'Neill 97a] O'Neill, Don, "Issues in Software Inspection", IEEE Software,

@Copyright Don O'Neill, 2003 91 NSQE

Vol .14 No 1., January 1997, pp. 18-19

[O'Neill 97b] O'Neill, Don, “Setting Up a Software Inspection Program”, CrossTalk,
The Journal of Defense Software Engineering, Vol. 10 No. 2, February 1997

[O'Neill 97c] O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement 1992-1996", Quality Week Conference, San Francisco, May 1997 and
Quality Week Europe Conference, Brussels, November 1997, pp. 1-25

[O'Neill 98a] O'Neill, Don, “Software Inspections and the Year 2000 Problem”,
CrossTalk, The Journal of Defense Software Engineering, Vol. 11 No. 1, January 1998

[O'Neill 98b] O'Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1997”, CrossTalk, The Journal of Defense Software Engineering, Vol.
11 No. 12, Web Addition, December 1998

[O'Neill 98c] O'Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1997”,Twenty-Third Annual Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, Maryland, 2-3 December 1998

[O'Neill 99a] O'Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1997”,First Annual International Software Assurance Certification
Conference, Chantilly, Virginia, 1 March 1999

[O'Neill 99b] O'Neill, Don, "Software is Research... A Process of Experimentation",
The Competitor, Vol3 No 1, 1999

[O'Neill 00] O'Neill, Don, “National Software Quality Experiment: A Lesson in
Measurement 1992-1999”, Software Technology Conference 2000, Salt Lake City, May
2000

[O'Neill 01] “Return on Investment Using Software Inspections”, 11th International
Conference on Software Quality, 22-24 October 2001, Pittsburgh, Pennsylvania
http://members.aol.com/ONeillDon/roi-essay.html

[O'Neill 02] “Peer Reviews”, Encyclopedia of Software Engineering Second
Edition, John Wiley &Sons, Inc., January 2002
http://members.aol.com/ONeillDon2/peer-reviews.html

[Paulk 95] Paulk, Mark C., “The Capability Maturity Model: Guidelines for
Improving the Software Process”, Addison-Wesley Publishing Company, 1995, pp. 270-
276

[Prowell 99] Prowell, Stacy J., Carmen J.Trammell, Richard C. Linger, Jesse H. Poore,
“Cleanroom Software Engineering: Technology and Process”, Addison-Wesley Longman,
Inc., 1999, page 17

[Radice 02] Radice, Ronald A., “High Quality Low Cost Software Inspections”,
Paradoxicon Publishing, Andover, Massachusetts, 2002

[SEI 97] "Practical Software Measurement: Measuring for Process
Management and Improvement", Software Engineering Institute, CMU/SEI-97-H8-003,
@Copyright Don O'Neill, 2003 92 NSQE

1997

[SEI 00.1] “Personal Software Process”, CMU/SEI-2000-TR-022

[SEI 00.2] “Team Software Process”, CMU/SEI-2000-TR-023

[SPC 92] "Statistical Process Control (SPC), Reference Manual", Chrysler
Corporation, Ford Motor Company, and General Motors Corporation, 1992

[Tichy 98] Tichy, Walter F., “Should Computer Scientists Experiment More?”,
Computer, 31(5), 32-40, May 1998

[Van Verth 92] Van Verth, Patricia B., "A Concept Study for a National Software
Engineering Database", CMU/SEI-92-TR-23, July 1992

[Voas 98] Voas, Jeffrey M. and Gary McGraw, “Software Fault Injection”, John
Wiley & Sons, Inc., New York, 1998

[Wallace 96] Wallace, Dolores R., Marvin V. Zelkowitz, "Experimental Models for
Software Diagnostics", NIST Computer System Laboratory, NISTIR 5889, September
1996

[Wallace 97] Wallace, Dolores R., Laura M. Ippolito, and Herbert Hecht, "Error,
Fault, and Failure Data Collection and Analysis", http://hissa.ncsl.nist.gov, Quality Week,
San Francisco, May 1997

[Wang 82] Wang, Alan and Nick Kirschner, "Software Inspections at
Gaithersburg", IBM FSD Software Engineering Exchange, Vol. 4, No. 2, October 1982

[Weinberg 84] Weinberg, G. M. and Weiss, D. P., "Reviews, Walkthroughs, and
Inspections", IEEE Transactions on Software Engineering, No. 1, Vol. SE-10, January
1984, 68-72

[Weller 93] Weller, Edward F., "Lessons From Three Years of Inspection Data",
IEEE Software Magazine, September 1993

[Zelkowitz 98] Zelkowitz, Marvin V. and Dolores. Wallace, “Experimental Models for
Validating Technology”, Computer, 31(5), 23-31, May 1998

@Copyright Don O'Neill, 2003 93 NSQE

Author: Don O'Neill
Don O’Neill is a seasoned software engineering manager and technologist currently serving
as an independent consultant. Following his twenty-seven year career with IBM’s Federal
Systems Division, Mr. O’Neill completed a three year residency at Carnegie Mellon
University’s Software Engineering Institute (SEI) under IBM’s Technical Academic Career
Program. There he developed a blueprint for charting software engineering evolution in the
organization including the training architecture and change management strategy needed to
transition skills into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing
strategic software improvement. These include implementing an organizational Software
Inspections Process, implementing Software Risk Management, and conducting Global
Software Competitiveness Assessments. Each of these programs includes the necessary
practitioner and management training.

In his IBM career, Mr. O’Neill completed assignments in management, technical
performance, and marketing in a broad range of applications including space systems,
submarine systems, military command and control systems, communications systems, and
management decision support systems. He was awarded IBM’s Outstanding Contribution
Award three times:

1. Software Development Manager for the Global Positioning
Ground Segment (500,000 source lines of code) and a team of
70 software engineers within a $150M fixed price program.

2. Manager of the FSD Software Engineering Department
responsible for the origination of division software engineering

strategies, the preparation of software management and
engineering practices, and the coordination of these practices

throughout the division’s software practitioners and managers.

3. Manager of Data Processing for the Trident Submarine
Command and Control System Engineering and Integration

Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O’Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the IEEE. He is a founding member of the
National Software Council and the Washington DC Software Process Improvement
Network (SPIN). He is an active speaker on software engineering topics and has served
as the Program Chairman and Program Committee member for several conferences. He
has numerous publications to his credit. Mr. O’Neill has a Bachelor of Science degree in
mathematics from Dickinson College in Carlisle, Pennsylvania.

Contact Information
Don O’Neill
Independent Consultant
9305 Kobe Way
Montgomery Village, Maryland 20886

Phone: (301) 990-0377
@Copyright Don O'Neill, 2003 94 NSQE

email: ONeillDon@aol.com
http://members.aol.com/ONeillDon/index.html

Don O’Neill Photo oneill.gif
http://members.aol.com/ONeillDon/oneill.gif

word count: 18,350

@Copyright Don O'Neill, 2003 95 NSQE

National Software Quality Experiment
Prediction Statistics (1992-1998)

Inspection Lab Operations

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
Total 12.164243012 74.872700149 2.3492688762 12.110825679 901.04840266 4.967094703
0.66037876528 4.5115737255
Average 13.947873927 116.11004934 3.7682694314 16.637492552 914.9310785 5.5364536887
0.71302383661 4.8310625288
Max 63.636363636 816.11004934 35.142857143 50.704225352 9122.2304833 20
2.1341463415 15.311850312
Min 2.7272727273 14.75 0 0 0 1.7777777778
0.125 1.1089494163
Range 60.909090909 801.36004934 35.142857143 50.704225352 9122.2304833 18.222222222
2.0091463415 14.202900896
STDEV 8.6390979648 120.98438956 5.0650642888 12.188842693 1184.5835154 2.9295997363
0.36226981654 2.5193105155
VAR 74.634013646 14637.222518 25.65487625 148.56788619 1403238.105 8.582554615
0.13123941997 6.3469254733
Detection -0.00377253803 -0.06895247993 -0.00819496634 -0.1963330474 -0.34017122235
0.1154345067 0.10951905497 0.09109737268
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

 Process Maturity
Level 1 11.175509687 73.851882845 1.7655236809 9.9017068699 1101.0215535 4.8064516129
0.59816320998 4.4421166023
Average 14.010635561 123.29234127 3.1726196506 16.29014321 1127.8640928 5.6317340991
0.69808431539 4.8024798577
Max 63.636363636 823.29234127 16.337644656 50.704225352 9122.2304833 20
2.1341463415 15.311850312
Min 2.7272727273 14.75 0 0 0 1.7777777778
0.125 1.1089494163
Range 60.909090909 808.54234127 16.337644656 50.704225352 9122.2304833 18.222222222
2.0091463415 14.202900896
STDEV 10.00434655 133.93899317 3.2794464231 11.641784235 1435.6811149 3.3380190385
0.36390672576 2.6211868097
VAR 100.0869499 17939.653891 10.754768842 135.53114018 2061180.2637 11.142371102
0.13242810505 6.8706202912
Detection -0.01486114659 -0.19162410828 -0.16386035176 -0.30756762992 -0.58369345382
0.06873593398 -0.02573215222 0.07142113379
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Level 2 14.290993704 79.824159021 4.7046298161 21.573677093 540.86764801 5.4279346211
0.84632968031 4.6808734821
Average 14.275587186 99.054409432 4.7585788045 16.741365981 553.31445228 5.5004789013
0.79593682544 4.7682801733
Max 32.440433213 382.05440943 35.142857143 50.571428571 2494.75 14.235294118
1.7519305019 10.849176172
Min 5.8653846154 20.842105263 0 0 0 2.696969697

@Copyright Don O'Neill, 2003 96 NSQE

0.37841191067 2.378768021
Range 26.575048598 361.21230417 35.142857143 50.571428571 2494.75 11.538324421
1.3735185912 8.470408151
STDEV 6.3433579768 59.648923719 7.9057172863 14.052700107 556.06549694 2.4381894269
0.40015120485 2.216085508
VAR 40.238190421 3557.9941009 62.500365811 197.47838031 309208.83689 5.9447676814
0.16012098674 4.9110349789
Detection 0.05001258985 0.1949123702 0.6199012843 0.28014486871 0.09844776598
0.24939959916 0.51376017458 0.13905764365
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 97 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s

P r ep/Conduc t R O I
Level 3 12.211352657 62.413580247 4.0352712599 16.589448513 513.04792332 4.7045454545
0.53839190628 4.4110622685
Average 12.643946477 122.77273917 4.4276199385 18.375186043 700.94235529 5.0811678207
0.56363249285 5.1778534751
Max 23.892307692 640.43940584 10.297215071 40.48677744 1359.2465753 7.8571428571
0.90081206497 10.909090909
Min 5.1923076923 22.5 0.44326241135 5.291005291 193.49433962 3.8235294118
0.42965246637 1.6295392127
Range 18.7 617.93940584 9.8539526597 35.195772149 1165.7522357 4.0336134453
0.4711595986 9.2795516963
STDEV 6.0313665283 176.6645739 3.2653433921 11.213191511 387.28660089 1.5565258493
0.15850958839 3.0592851704
VAR 36.377382198 31210.37167 10.662467468 125.73566386 149990.91123 2.4227727196
0.02512528961 9.3592257538
Detection -0.13910949113 -0.06310761079 0.44140566931 0.02917666228 0.13232592116
0.03911205074 -0.15566976895 0.0626238721
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Programming Language
Old Style 12.877863731 81.129334583 1.8394997664 9.7491763627 1116.3017609 4.6326671261
0.69414151458 4.3331613599
Average 14.450789198 104.90619265 3.8321678418 13.924896333 1082.6246124 4.989121986
0.7655066756 4.8463881108
Max 32.440433213 622.57285932 35.142857143 50.571428571 9122.2304833 14.235294118
1.7519305019 10.849176172
Min 6.8779527559 20.842105263 0 0 0 2.4838709677
0.39451476793 1.4591238358
Range 25.562480457 601.73075406 35.142857143 50.571428571 9122.2304833 11.75142315
1.357415734 9.3900523362
STDEV 5.6353888182 94.314214085 6.3467045348 11.790318061 1612.6498262 2.3791420272
0.35567302585 2.2315378781
VAR 31.757607132 8895.1709785 40.280658452 139.01159997 2600639.4618 5.6603167854
0.12650330132 4.9797613012
Detection 0.06419003457 0.01958607085 -0.14413339563 -0.31524791729 -0.60230130291
0.01821718783 0.18291633604 0.04055562605
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Modern 11.31612447 67.800847458 3.4207608294 17.074814648 641.17565056 5.4332372719
0.61961741016 4.7368798565
Average 13.473696672 126.67368564 3.7080223587 19.195083273 756.82003224 6.0525092942
0.66354001699 4.8166126943
Max 63.636363636 826.67368564 16.337644656 50.704225352 2494.75 20
2.1341463415 15.311850312
Min 2.7272727273 14.75 0 0 0 1.7777777778
0.125 1.1089494163
Range 60.909090909 811.92368564 16.337644656 50.704225352 2494.75 18.222222222
2.0091463415 14.202900896

@Copyright Don O'Neill, 2003 98 NSQE

STDEV 10.803076168 142.25085564 3.5547559659 12.167837105 514.31063649 3.3197013408
0.36655534873 2.7964083389
VAR 116.70645468 20235.30593 12.636289977 148.05625981 264515.43081 11.020416992
0.13436282368 7.8198995979
Detection -0.08059040346 -0.17417810551 0.27753622117 0.05361604473 -0.02370477557
0.2509410674 0.02090741339 0.15492347211
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 99 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
Product Type
Embedded 13.142696449 73.681981982 4.3583421024 20.075858711 542.36166815
5.3097269625 0.7257054126 4.6593345571
Average 14.621852651 118.76829566 4.5704015179 18.639566375 628.31277051 5.8184943814
0.75202201633 4.9965057194
Max 63.636363636 818.76829566 35.142857143 50.704225352 2494.75 20
2.1341463415 15.311850312
Min 2.8736263736 14.75 0 0 0 1.7777777778
0.24212962963 1.1089494163
Range 60.762737262 804.01829566 35.142857143 50.704225352 2494.75 18.222222222
1.8920167119 14.202900896
STDEV 9.9359064055 128.67565638 6.0281638248 13.594837168 529.75048826 3.3551214522
0.40153531935 2.8342820125
VAR 98.722236099 16557.424546 36.338759099 184.81959762 280635.57981 11.256839959
0.16123061269 8.0331545262
Detection -0.01670669148 0.05244372812 0.52755789397 0.20472601768 0.09662838615
0.21503690769 0.25153350565 0.13295596517
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Organic 11.174979691 76.339622642 1.4983528097 8.7373425773 1251.6346354 4.6628787879
0.59652744051 4.3554642939
Average 12.859139066 111.81595912 2.4725175993 13.4033733 1377.9298837 5.0808494929
0.65002677706 4.5638081439
Max 30.961538462 629.48262579 12.778235779 34.784015531 9122.2304833 10.142857143
1.2790697674 9.7571743929
Min 2.7272727273 20 0.31786395423 0.75798327547 292.93838863 2.6666666667
0.125 1.6295392127
Range 28.234265735 609.48262579 12.460371825 34.026032256 8829.2920947 7.4761904763
1.1540697674 8.1276351802
STDEV 6.009891557 109.7384708 2.516432598 8.8003376734 1714.4914901 2.047073952
0.28393841683 1.9274648915
VAR 36.118796527 12042.531974 6.3324330204 77.445943166 2939481.0695 4.190511765
0.08062102455 3.7151209081
Detection 0.01216187966 -0.1916898646 -0.23510591741 -0.36619624485 -0.76710624523
0.02699964764 -0.02928817282 0.04687373764
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Organization Type
Commercial10.850646805 68.458367683 1.9715242337 10.467119592 1048.2323878 5.0183606557
0.58948803135 4.6511067045
Average 11.671345026 86.915546053 3.5619040162 15.429429927 844.64441889 5.6317269609
0.56792893688 5.0594786598
Max 32.625 369.91554605 16.337644656 35.568010347 2494.75 11.375
1.1908284024 15.311850312
Min 2.7272727273 14.75 0 0 0 1.7777777778
0.125 2.0725388601
Range 29.897727273 355.16554605 16.337644656 35.568010347 2494.75 9.5972222222
1.0658284024 13.239311452

@Copyright Don O'Neill, 2003 100 NSQE

STDEV 6.4659939308 60.44355121 3.7650975561 9.5672023126 517.94645323 2.2914049475
0.20537799276 2.7343175175
VAR 41.809077514 3653.4228829 14.175959607 91.531360091 268268.52841 5.2505366334
0.04218011991 7.4764922867
Detection -0.0734481025 -0.23192967678 -0.10892687102 -0.27909770434 -0.51940814663
0.13033739992 -0.0445912362 0.13062512876
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 101 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s

P r ep/Conduc t R O I
DOD Ind. 14.338060384 97.641744548 3.2312291757 18.773340849 508.84241079 4.5352697095
0.66892180297 3.6476169772
Average 14.863279892 137.33311323 4.141917977 23.598323034 560.40319419 5.5548114633
0.74676373552 3.7532410689
Max 26.176470588 621.66644656 10.452961672 50.704225352 1549.4230769 20
1.3894230769 6.4295874822
Min 5.8653846154 48.636363636 0.54406964091 8.5106382979 153.41389728 2.4838709677
0.33484162896 1.4591238358
Range 20.311085973 573.03008293 9.9088920311 42.193587054 1396.0091796 17.516129032
1.0545814479 4.9704636464
STDEV 4.5834869399 113.04391679 2.9822799517 12.291898719 366.31246886 4.1180673871
0.34112482584 1.2296618753
VAR 21.008352528 12778.927123 8.8939937106 151.09077412 134184.82484 16.958479005
0.11636614681 1.5120683275
Detection 0.24355577393 0.20075190872 0.22699444685 0.13914102968 0.13744728766 -
0.01009601467 0.12809087602 -0.15364958153
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Gov 14.252067743 75.86163522 3.3732179226 14.581918986 842.55014896 5.2350515464
0.89836146971 4.986529961
Average 16.962980423 146.29068191 3.7815151162 12.444012857 1350.5177701 5.3595680636
0.92720586345 5.4107282459
Max 63.636363636 846.29068191 35.142857143 50.571428571 9122.2304833 14.235294118
2.1341463415 10.849176172
Min 6.7692307692 20.842105263 0 0 0 1.8333333333
0.39451476793 1.1089494163
Range 56.867132867 825.44857665 35.142857143 50.571428571 9122.2304833 12.401960785
1.7396315736 9.7402267557
STDEV 12.943143303 184.20054018 7.9350786916 13.933569839 2077.0421635 2.7892470561
0.474866108 2.803539109
VAR 167.52495857 33929.839004 62.965473841 194.14436847 4314104.1491 7.7798991398
0.22549782052 7.8598315355
Detection 0.00696975038 0.19008284655 0.2648581127 -0.07190740251 -0.26893353259
0.1933289379 0.62687276024 0.22564588131
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33333333 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Annual
1992 15.485466914 107.00854701 3.2592344977 19.262911583 713.44153693 5.575862069
1.0367671414 4.2555700114
Average 16.302940833 102.0739189 3.2586981498 18.797537927 972.58352067 5.9188683646
1.0636600607 4.955097305
Max 32.440433213 285.461674 4.6662274923 27.94246816 2127.8688525 9.6
1.7006056018 7.1519147857
Min 6.8779527559 64.703703704 1.3867488444 11.658962506 462.53068134 3.6956521739
0.73523294509 2.8128941836
Range 25.562480457 220.7579703 3.2794786479 16.283505654 1665.3381712 5.9043478261
0.96537265671 4.3390206021

@Copyright Don O'Neill, 2003 102 NSQE

STDEV 10.516182291 43.67251233 1.1775536233 6.1769387261 636.95845679 2.0996720415
0.38608602389 1.7325400556
VAR 110.59008999 1907.2883332 1.3866325358 38.154572026 405716.07568 4.408622682
0.14906241784 3.0016950442
Detection 0.39875247126 0.34311003896 0.23446253273 0.16379212401 -0.11170833924
0.29240176423 0.9277546553 0.01857507405
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 103 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
1993 11.561200924 76.427480916 3.9976807348 22.429735421 651.6871064 6.0985915493
0.82963208485 5.2010869565
Average 13.059047899 114.00316138 17202.501047 100006.62781 791.69340384 6.5777800631
0.91852712853 4.9774994999
Max 19.051724138 397.00316138 54000 290000 2494.75 14.235294118
1.7519305019 6.4873902745
Min 7.9680232558 50.759259259 0.20042088386 4.2589437819 0.05410279531 2.696969697
0.53262518968 2.378768021
Range 11.083700882 346.24390212 53999.799579 289995.74106 2494.6958972 11.538324421
1.2193053122 4.1086222535
STDEV 4.2419585972 97.783905834 24801.057948 139815.38939 1035.3030469 4.5151263653
0.51846225427 1.7031350109
VAR 17.99421274 9561.6922402 615092475.35 19548343110 1071852.399 20.386366095
0.2688031091 2.9006688655
Detection 0.01514652429 -0.14377159754 0.43138152929 0.32324951766 -0.03650535991
0.44435800852 0.47746105403 0.28642689986
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

1994 13.877348066 84.288590604 4.6376992032 23.530876494 471.31540342 5.5521472393
0.76766503667 4.3507728483
Average 14.66112834 86.345830546 3.5346219018 16.85664016 428.78161826 5.1337189127
0.72069149965 4.1603221553
Max 18.368421053 202.67916388 8.6225479629 35.568010347 784.12844037 7.3214285714
0.91984304933 5.0367764631
Min 12.029268293 61.65 0 0 0.2 3.7307692308
0.57798165138 2.9021372328
Range 6.33915276 141.02916388 8.6225479629 35.568010347 783.92844037 3.5906593406
0.34186139795 2.1346392303
STDEV 2.4291778739 20.793087336 3.2676301775 14.180684433 296.1144664 1.5490489739
0.13973156534 0.92098399837
VAR 5.900905143 432.35248097 10.677406977 201.09181099 87683.777213 2.3995527236
0.01952491035 0.84821152526
Detection 0.11375552689 0.1435915715 0.60205312085 0.37869468751 0.1831467255
0.28550791839 0.34275007973 0.04554471623
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

1995 12.242280946 76.942307692 1.4121992287 7.4634235462 1451.5033148 4.400244798
0.65715522905 4.4174333006
Average 12.625028943 108.54697955 5.933867828 16.754776474 1263.4566276 4.972037282
0.74108932044 5.3330746865
Max 16.698795181 455.04697955 35.142857143 50.571428571 3060 8.8333333333
1.3894230769 10.849176172
Min 8.7894736842 24.62601626 0.6197981229 1.4064697609 206.28683694 2.9
0.39451476793 1.9736842105
Range 7.9093214968 430.42096329 34.52305902 49.16495881 2853.7131631 5.9333333333
0.99490830897 8.8754919615
STDEV 2.3114754864 97.690619527 11.156209021 15.509910309 895.70837681 1.8643587491

@Copyright Don O'Neill, 2003 104 NSQE

0.31246005055 3.0232112522
VAR 5.3429189243 9543.4571436 124.46099972 240.5573178 802293.49629 3.4758335454
0.09763128319 9.1398062751
Detection 0.02160446177 -0.05927035412 -0.25808020567 -0.43034121117 -1.0105012541 -
0.04934744243 0.1025113675 0.06442869705
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 105 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
1996 12.37195122 97.548076923 1.7365604415 11.955550732 826.90369348 4.8520710059
0.58364975262 3.6008282777
Average 14.261302962 175.22309208 1730.3434269 3018.2186221 1327.9005294 5.9131373796
0.62794205686 3.9346090366
Max 23.892307692 692.88975875 19000 33000 9122.2304833 20
1.0261299435 9.5031055901
Min 7.6153846154 20.842105263 0.31786395423 0.75798327547 0.26905829596 2.5757575758
0.43996840442 1.4591238358
Range 16.276923077 672.04765349 18999.682136 32999.242017 9121.961425 17.424242424
0.58616153908 8.0439817543
STDEV 5.0409265726 174.19725371 5727.698417 9943.8400282 2613.2273401 4.795074442
0.20340483774 2.2071292155
VAR 25.41094071 30344.683199 32806529.156 98879954.506 6828957.1311 22.992738905
0.04137352801 4.871419374
Detection 0.2800812459 -0.04318223083 -0.17158388227 -0.20415152408 -0.24987967592
0.08199738544 -0.05728314648 -0.16690417063
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

1997 10.463196421 49.959223301 4.6196212808 17.437949068 540.99482368 4.8215686275
0.52024021352 5.2502493849
Average 12.795723549 70.260583685 5.6103188587 19.221919809 544.95956847 5.3495069615
0.57681783583 5.4741849518
Max 30.961538462 271.51058369 16.337644656 45.950155763 853.69863014 10.142857143
1.1908284024 15.311850312
Min 6.6168224299 14.75 1.6638935108 8.5106382979 251.76470588 2.4838709677
0.33484162896 2.3497636732
Range 24.344716032 256.76058369 14.673751145 37.439517465 601.93392426 7.6589861753
0.85598677344 12.962086639
STDEV 6.5119374997 47.440043374 4.4837986888 10.009063486 202.72778814 2.7361687319
0.22143288543 3.5561315988
VAR 42.405329999 2250.5577153 20.104450682 100.18135188 41098.556083 7.4866193295
0.04903252275 12.646071948
Detection -0.31686874936 -0.28000044401 0.59723234154 0.07190075869 0.09829289467
0.07313041496 -0.1951299706 0.30035393339
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

1998 8.2382851446 52.630573248 2.3241010762 12.523500067 843.53381894 5.7314285714
0.42991675338 4.931776007
Average 10.51824683 76.825418673 1771.3845149 12243.932528 798.80036112 5.5723584585
0.44822210568 5.0318213057
Max 32.625 250.82541867 23000 159000 1690.7908163 11.375
0.82075471698 10.909090909
Min 2.7272727273 20 0.92165898618 4.399323181 0.11111111111 1.7777777778
0.125 2.0725388601
Range 29.897727273 230.82541867 22999.078341 158995.60068 1690.6797052 9.5972222222
0.69575471698 8.8365520489
STDEV 7.9587717223 54.008419099 6378.405282 44094.711311 435.28817925 2.4186942474

@Copyright Don O'Neill, 2003 106 NSQE

0.17166483978 2.5261406373
VAR 63.342047328 2916.9093336 40684053.942 1944343565.6 189475.799 5.8500818623
0.02946881722 6.3813865196
Detection -0.28335959297 -0.55604402673 -0.01490637968 -0.17555387379 -0.27013142095
0.33762458472 -0.39148531874 0.21013484617
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 107 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
Industry Type
Telecomm 11.578378378 112.73684211 2.1131068231 18.461880665 865.95505618
6.9811320755 0.8595505618 4.3634009495
Average 10.65570474 157.21536797 3.5939095786 20.482505846 826.30952386 8.4133333333
0.77086385958 5.4851563857
Max 14.861111111 641.5487013 7.3333333333 31.090723751 1549.4230769 20
1.3894230769 10.909090909
Min 5.1923076923 22.5 0.54406964091 16.010922179 360 3
0.40744274809 2.593238062
Range 9.6688034187 619.0487013 6.7892636924 15.079801572 1189.4230769 17
0.98198032881 8.315852847
STDEV 4.5112354557 187.48554501 3.023153227 6.2404415432 472.84460753 6.6669312447
0.42156118665 3.1892371195
VAR 20.351245336 35150.829589 9.139455434 38.943110654 223582.02287 44.447972222
0.17771383409 10.171233404
Detection 0.4706076531 -0.1416403997 -0.07117151384 0.12345824094 -0.29743543503
0.70091048706 0.5425012213 0.04912208201
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Transport 11.972861842 74.280612245 1.7482673422 9.0981259644 1213.3225108
5.3100436681 0.65652056277 4.547162107
Average 12.71763751 102.05920599 2.2340136 11.623458586 2035.8014082 4.7943308839
0.58452126405 4.3094078759
Max 18.368421053 385.05920599 4.945498587 27.94246816 9122.2304833 7.8571428571
0.82469318663 7.1985885121
Min 6.9681818182 31.285714286 0.20042088386 0.75798327547 462.53068134 2.696969697
0.42965246637 2.378768021
Range 11.400239235 353.7734917 4.7450777031 27.184484885 8659.699802 5.1601731601
0.39504072026 4.8198204911
STDEV 3.437234436 80.53461829 1.7660027747 8.6176290078 2939.3130588 1.5972073629
0.12513857612 1.570909967
VAR 11.814580568 6485.8247431 3.1187658003 74.263529716 8639561.2579 2.5510713602
0.01565966323 2.4677581245
Detection -0.0117835895 -0.09269704192 -0.16846204208 -0.34802991116 -0.72045071157
0.21512897329 0.1011316582 0.10117906713
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Financial 11.060845516 74.158940397 1.5980154976 9.116096355 1184.6076055 4.6525735294
0.58493522775 4.3907455013
Average 13.058775918 92.522099685 3.2869038313 15.561778515 788.98464487 5.1541532878
0.59553137545 4.2625168714
Max 30.961538462 293.77209969 12.778235779 34.784015531 1710.1273941 10.142857143
1.1908284024 7.435530086
Min 5.8653846154 34.451612903 0.70564761418 6.3973534903 292.93838863 2.7222222222
0.37841191067 2.3497636732
Range 25.096153847 259.32048678 12.072588165 28.386662041 1417.1890055 7.4206349208
0.81241649173 5.0857664128

@Copyright Don O'Neill, 2003 108 NSQE

STDEV 6.4008766514 53.136201464 3.2563577691 9.2677008216 386.35691863 2.1423701033
0.2172771633 1.5621842727
VAR 40.971221906 2823.455906 10.60386592 85.890278519 149271.66858 4.5897496594
0.04720936569 2.4404197018
Detection -0.01330982944 -0.20585043231 -0.20852920065 -0.34712505765 -0.68548242814
0.02400393297 -0.05448863533 0.05686841396
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 109 NSQE

B i n P r ep /De f e c t P r e p / M a j M a j / K S L O C M i n / K S L O C L i n e s /Conduc t D e f e c t s / S e s s
P r ep/Conduc t R O I
Manufact 10.160243408 47.933014354 6.6271363795 24.637727114 425.12244439 6.3612903226
0.56268254325 5.7321544102
Average 11.915031714 60.127599638 2880.6655117 19891.967213 528.26904873 6.3209120464
0.52514971482 6.1897267265
Max 32.625 234.12759964 23000 159000 1115.0943396 11.375
0.84255202629 15.311850312
Min 2.7272727273 14.75 1.0152284264 4.399323181 0.11111111111 1.7777777778
0.125 2.0725388601
Range 29.897727273 219.37759964 22998.984772 158995.60068 1114.9832285 9.5972222222
0.71755202629 13.239311452
STDEV 9.5777428641 51.449742676 8129.4404936 56208.134312 349.45235377 3.1318320904
0.25533339189 4.054557149
VAR 91.73315837 2647.0760215 66087802.74 3159354362.8 122116.94755 9.8083722426
0.06519514101 16.439433674
Detection -0.34228531919 -0.31758766654 1.1325697012 0.43442734714 0.23939933949
0.52072393098 -0.10286403642 0.43687093773
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Medical 7.2421524664 48.939393939 1.6158648549 9.3034643163 1499.8164015 6.96875
0.49418604651 5.9840262134
Average 7.4834646392 89.956573501 1.5007043696 13.0617762 1358.736501 7.085
0.57088730252 5.4621177456
Max 8.7894736842 228.62324017 2.3792529146 20.461575065 1690.7908163 9.6
0.95918367347 7.7561311025
Min 6.2602040816 26.673913043 0.6197981229 6.789480831 784.3373494 5
0.3912627551 3.5269121813
Range 2.5292696026 201.94932713 1.7594547917 13.672094234 906.4534669 4.6
0.56792091837 4.2292189212
STDEV 1.0819106165 49.850855065 0.86045849502 6.8076531392 425.93872546 2.0531845184
0.26431651603 2.1712239056
VAR 1.1705305821 2485.1077507 0.74038882165 46.344141264 181423.79785 4.2155666667
0.06986322064 4.7142132484
Detection -0.32966139062 -0.67963368904 -0.20376937202 -0.33769061851 -1.0693357057
0.69731104651 -0.25176946411 0.50822272334
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

Defense 14.538855282 83.651941098 4.1252712904 19.610225371 537.96494355 4.7596899225
0.77351950881 4.3025852923
Average 16.499238064 140.05872838 3810.6332551 19114.878166 731.2642072 5.0096903636
0.84916154985 4.6482167668
Max 63.636363636 840.05872838 54000 290000 3060 14.235294118
2.1341463415 10.849176172
Min 6.7692307692 20.842105263 0.43706293706 1.4064697609 0.05410279531 1.8333333333
0.33484162896 1.1089494163
Range 56.867132867 819.21662312 53999.562937 289998.59353 3059.9458972 12.401960785
1.7993047125 9.7402267557
STDEV 10.427930258 150.03939416 11575.625361 63624.754419 736.9570696 2.4285137672

@Copyright Don O'Neill, 2003 110 NSQE

0.42953861556 2.4874972821
VAR 108.74172947 22511.8198 133995102.49 4048109374.9 543105.72243 5.8976791175
0.18450342226 6.1876427287
Detection 0.10576945682 0.22566442699 0.46540567745 0.18128023017 0.10198260585
0.05514241933 0.35547719307 0.03189385051
LCL(14) 7.9680232558 46.606557377 0.92165898618 6.789480831 293.91763464 3.5555555556
0.45052631579 2.9021372328
Median 12.719101124 75.222222222 2.3792529146 16.010922179 621.71449461 4.75
0.60769230769 4.1889570552
UCL(54) 16.026041667 126.33 4.6662274923 26.64824319 1115.0943396 7
0.9056122449 6.4295874822

@Copyright Don O'Neill, 2003 111 NSQE

